1
|
Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, Elkafas SS, Abdel Fattah NF, Hessien M. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Rev Med Virol 2023; 33:e2403. [PMID: 36345157 PMCID: PMC9877911 DOI: 10.1002/rmv.2403] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Emergence of SARS-CoV-2 variants warrants sustainable efforts to upgrade both the diagnostic and therapeutic protocols. Understanding the details of cellular and molecular basis of the virus-host cell interaction is essential for developing variant-independent therapeutic options. The internalization of SARS-CoV-2, into lung epithelial cells, is mediated by endocytosis, especially clathrin-mediated endocytosis (CME). Although vaccination is the gold standard strategy against viral infection, selective inhibition of endocytic proteins, complexes, and associated adaptor proteins may present a variant-independent therapeutic strategy. Although clathrin and/or dynamins are the most important proteins involved in CME, other endocytic mechanisms are clathrin and/or dynamin independent and rely on other proteins. Moreover, endocytosis implicates some subcellular structures, like plasma membrane, actin and lysosomes. Also, physiological conditions, such as pH and ion concentrations, represent an additional factor that mediates these events. Accordingly, endocytosis related proteins are potential targets for small molecules that inhibit endocytosis-mediated viral entry. This review summarizes the potential of using small molecules, targeting key proteins, participating in clathrin-dependent and -independent endocytosis, as variant-independent antiviral drugs against SARS-CoV-2 infection. The review takes two approaches. The first outlines the potential role of endocytic inhibitors in preventing endocytosis-mediated viral entry and its mechanism of action, whereas in the second computational analysis was implemented to investigate the selectivity of common inhibitors against endocytic proteins in SARS-CoV-2 endocytosis. The analysis revealed that remdesivir, methyl-β-cyclodextrin, rottlerin, and Bis-T can effectively inhibit clathrin, HMG-CoA reductase, actin, and dynamin I GTPase and are more potent in inhibiting SARS-CoV-2 than chloroquine. CME inhibitors for SARS-CoV-2 infection remain understudied.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research DepartmentNational Center for Social and Criminological Research (NCSCR)GizaEgypt
| | - Soumya Ghosh
- Department of GeneticsFaculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
| | - Samah A. Loutfy
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
- Nanotechnology Research CenterBritish UniversityCairoEgypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design DepartmentFaculty of EngineeringMenofia UniversityMenofiaEgypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
| | - Mohamed Hessien
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| |
Collapse
|
2
|
Abstract
Selectively targeting the cell nucleolus remains a challenge. Here, we report the first case in which d-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A d-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin-dependent endocytosis and mainly accumulate at the cell nucleolus. A structural analogue of the d-peptide reveals that the particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. In contrast to those of the d-peptide, the assemblies of the corresponding l-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the d-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of d-peptides for targeting subcellular organelles.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| |
Collapse
|
3
|
Xue Z, Wang S, Li J, Chen X, Han J, Han S. Bifunctional Super-resolution Imaging Probe with Acidity-Independent Lysosome-Retention Mechanism. Anal Chem 2018; 90:11393-11400. [DOI: 10.1021/acs.analchem.8b02365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongwei Xue
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Siyu Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Jian Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Xin Chen
- State key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Orellana-Tavra C, Haddad S, Marshall RJ, Abánades Lázaro I, Boix G, Imaz I, Maspoch D, Forgan RS, Fairen-Jimenez D. Tuning the Endocytosis Mechanism of Zr-Based Metal-Organic Frameworks through Linker Functionalization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35516-35525. [PMID: 28925254 PMCID: PMC5663390 DOI: 10.1021/acsami.7b07342] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/19/2017] [Indexed: 05/21/2023]
Abstract
A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4'-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs.
Collapse
Affiliation(s)
- Claudia Orellana-Tavra
- Adsorption &
Advanced Materials Laboratory (AAML), Department of Chemical Engineering
and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Salame Haddad
- Adsorption &
Advanced Materials Laboratory (AAML), Department of Chemical Engineering
and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Ross J. Marshall
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K.
| | - Isabel Abánades Lázaro
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K.
| | - Gerard Boix
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ross S. Forgan
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K.
| | - David Fairen-Jimenez
- Adsorption &
Advanced Materials Laboratory (AAML), Department of Chemical Engineering
and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
5
|
Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol 2017; 141:1774-1785.e7. [PMID: 28734845 DOI: 10.1016/j.jaci.2017.06.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a cell-surface protein expressed selectively on human eosinophils, mast cells, and basophils, making it an ideal target for the treatment of diseases involving these cell types. However, the effective delivery of therapeutic agents to these cells requires an understanding of the dynamics of Siglec-8 surface expression. OBJECTIVES We sought to determine whether Siglec-8 is endocytosed in human eosinophils and malignant mast cells, identify mechanisms underlying its endocytosis, and demonstrate whether a toxin can be targeted to Siglec-8-bearing cells to kill these cells. METHODS Siglec-8 surface dynamics were examined by flow cytometry using peripheral blood eosinophils, mast cell lines, and Siglec-8-transduced cells in the presence of inhibitors targeting components of endocytic pathways. Siglec-8 intracellular trafficking was followed by confocal microscopy. The ribosome-inhibiting protein saporin was conjugated to a Siglec-8-specific antibody to examine the targeting of an agent to these cells through Siglec-8 endocytosis. RESULTS Siglec-8 endocytosis required actin rearrangement, tyrosine kinase and protein kinase C activities, and both clathrin and lipid rafts. Internalized Siglec-8 localized to the lysosomal compartment. Maximal endocytosis in Siglec-8-transduced HEK293T cells required an intact immunoreceptor tyrosine-based inhibitory motif. Siglec-8 was also shuttled to the surface via a distinct pathway. Sialidase treatment of eosinophils revealed that Siglec-8 is partially masked by sialylated cis ligands. Targeting saporin to Siglec-8 consistently caused extensive cell death in eosinophils and the human mast cell leukemia cell line HMC-1.2. CONCLUSIONS Therapeutic payloads can be targeted selectively to eosinophils and malignant mast cells by exploiting this Siglec-8 endocytic pathway.
Collapse
|
6
|
Yan X, Yu Q, Guo L, Guo W, Guan S, Tang H, Lin S, Gan Z. Positively Charged Combinatory Drug Delivery Systems against Multi-Drug-Resistant Breast Cancer: Beyond the Drug Combination. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6804-6815. [PMID: 28185449 DOI: 10.1021/acsami.6b14244] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The formation and development of cancer is usually accompanied by angiogenesis and is related to multiple pathways. The inhibition of one pathway by monotherapy might result in the occurrence of drug resistance, tumor relapse, or metastasis. Thus, a combinatory therapeutic system that targets several independent pathways simultaneously is preferred for the treatment. To this end, we prepared combinatory drug delivery systems consisting of cytotoxic drug SN38, pro-apoptotic KLAK peptide, and survivin siRNA with high drug loading capacity and reductive responsiveness for the treatment of multi-drug-resistant (MDR) cancer. With the help of positive charge and the synergistic effect of different drug, the combinatory systems inhibited the growth of doxorubicin-resistant breast cancer cells (MCF-7/ADR) efficiently. Interestingly, the systems without siRNA showed more superior in vivo anticancer efficacy than those with siRNA which exhibited enhanced in vitro cytotoxicity and pro-apoptotic ability. This phenomenon could be attributed to the preferential tumor accumulation, strong tumor penetration, and excellent tumor vasculature targeting ability of the combinatory micelles of SN38 and KLAK. As a result, a combinatory multitarget therapeutic system with positive charge induced tumor accumulation and vasculature targeting which can simultaneously inhibit the growth of both tumor cell and tumor vasculature was established. This work also enlightened us to the fact that the design of combinatory drug delivery systems is not just a matter of simple drug combination. Besides the cytotoxicity and pro-apoptotic ability, tumor accumulation, tumor penetration, or vascular targeting may also influence the eventual antitumor effect of the combinatory system.
Collapse
Affiliation(s)
- Xu Yan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Linyi Guo
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Wenxuan Guo
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Shuli Guan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Hao Tang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Shanshan Lin
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, PR China
| |
Collapse
|
7
|
Wang H, Feng Z, Wang Y, Zhou R, Yang Z, Xu B. Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. J Am Chem Soc 2016; 138:16046-16055. [PMID: 27960313 PMCID: PMC5291163 DOI: 10.1021/jacs.6b09783] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeting organelles by modulating the redox potential of mitochondria is a promising approach to kill cancer cells that minimizes acquired drug resistance. However, it lacks selectivity because mitochondria perform essential functions for (almost) all cells. We show that enzyme-instructed self-assembly (EISA), a bioinspired molecular process, selectively generates the assemblies of redox modulators (e.g., triphenyl phosphinium (TPP)) in the pericellular space of cancer cells for uptake, which allows selectively targeting the mitochondria of cancer cells. The attachment of TPP to a pair of enantiomeric, phosphorylated tetrapeptides produces the precursors (L-1P or D-1P) that form oligomers. Upon dephosphorylation catalyzed by ectophosphatases (e.g., alkaline phosphatase (ALP)) overexpressed on cancer cells (e.g., Saos2), the oligomers self-assemble to form nanoscale assemblies only on the surface of the cancer cells. The cancer cells thus uptake these assemblies of TPP via endocytosis, mainly via a caveolae/raft-dependent pathway. Inside the cells, the assemblies of TPP-peptide conjugates escape from the lysosome, induce dysfunction of mitochondria to release cytochrome c, and result in cell death, while the controls (i.e., omitting TPP motif, inhibiting ALP, or removing phosphate trigger) hardly kill the Saos2 cells. Most importantly, the repeated stimulation of the cancers by the precursors, unexpectedly, sensitizes the cancer cells to the precursors. As the first example of the integration of subcellular targeting with cell targeting, this study validates the spatial control of the assemblies of nonspecific cytotoxic agents by EISA as a promising molecular process for selectively killing cancer cells without inducing acquired drug resistance.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States.,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science, Nankai University , Tianjin 300071, P.R. China
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Youzhi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science, Nankai University , Tianjin 300071, P.R. China
| | - Rong Zhou
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science, Nankai University , Tianjin 300071, P.R. China
| | - Bing Xu
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
8
|
Rosazza C, Deschout H, Buntz A, Braeckmans K, Rols MP, Zumbusch A. Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e286. [PMID: 26859199 PMCID: PMC4884790 DOI: 10.1038/mtna.2015.59] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
Abstract
DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ~50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics.
Collapse
Affiliation(s)
- Christelle Rosazza
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Department of Structural Biology and Biophysics, Institute of Pharmacology and Structural Biology (IPBS), CNRS UMR5089, Toulouse, France.,University of Toulouse III, UPS, Toulouse, France
| | - Hendrik Deschout
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, University of Ghent, Ghent, Belgium
| | - Annette Buntz
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, University of Ghent, Ghent, Belgium
| | - Marie-Pierre Rols
- Department of Structural Biology and Biophysics, Institute of Pharmacology and Structural Biology (IPBS), CNRS UMR5089, Toulouse, France.,University of Toulouse III, UPS, Toulouse, France
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Daniel JA, Chau N, Abdel-Hamid MK, Hu L, von Kleist L, Whiting A, Krishnan S, Maamary P, Joseph SR, Simpson F, Haucke V, McCluskey A, Robinson PJ. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic 2015; 16:635-54. [PMID: 25693808 DOI: 10.1111/tra.12272] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
Chlorpromazine is a phenothiazine-derived antipsychotic drug (APD) that inhibits clathrin-mediated endocytosis (CME) in cells by an unknown mechanism. We examined whether its action and that of other APDs might be mediated by the GTPase activity of dynamin. Eight of eight phenothiazine-derived APDs inhibited dynamin I (dynI) in the 2-12 µm range, the most potent being trifluoperazine (IC50 2.6 ± 0.7 µm). They also inhibited dynamin II (dynII) at similar concentrations. Typical and atypical APDs not based on the phenothiazine scaffold were 8- to 10-fold less potent (haloperidol and clozapine) or were inactive (droperidol, olanzapine and risperidone). Kinetic analysis showed that phenothiazine-derived APDs were lipid competitive, while haloperidol was uncompetitive with lipid. Accordingly, phenothiazine-derived APDs inhibited dynI GTPase activity stimulated by lipids but not by various SH3 domains. All dynamin-active APDs also inhibited transferrin (Tfn) CME in cells at related potencies. Structure-activity relationships (SAR) revealed dynamin inhibition to be conferred by a substituent group containing a terminal tertiary amino group at the N2 position. Chlorpromazine was previously proposed to target AP-2 recruitment in the formation of clathrin-coated vesicles (CCV). However, neither chlorpromazine nor thioridazine affected AP-2 interaction with amphiphysin or clathrin. Super-resolution microscopy revealed that chlorpromazine blocks neither clathrin recruitment by AP-2, nor AP-2 recruitment, showing that CME inhibition occurs downstream of CCV formation. Overall, potent dynamin inhibition is a shared characteristic of phenothiazine-derived APDs, but not other typical or atypical APDs, and the data indicate that dynamin is their likely in-cell target in endocytosis.
Collapse
Affiliation(s)
- James A Daniel
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia.,Present address: Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Mohammed K Abdel-Hamid
- Centre for Chemical Biology, Chemistry, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lingbo Hu
- Epithelial Cancer Group, The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, 13125, Berlin, Germany
| | - Ainslie Whiting
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Sai Krishnan
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Peter Maamary
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Shannon R Joseph
- Epithelial Cancer Group, The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Fiona Simpson
- Epithelial Cancer Group, The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, 13125, Berlin, Germany
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| |
Collapse
|
10
|
Breus VV, Pietuch A, Tarantola M, Basché T, Janshoff A. The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:281-292. [PMID: 25821666 PMCID: PMC4362492 DOI: 10.3762/bjnano.6.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/12/2014] [Indexed: 05/29/2023]
Abstract
In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine-QDs, negatively charged dihydrolipoic acid-QDs and zwitterionic D-penicillamine-QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with pharmacological inhibitors suggested that the uptake of nanoparticles was largely due to receptor-independent pathways or spontaneous entry for carboxylated and zwitterionic QDs, while for amine-functionalized particles involvement of cholesterol-enriched membrane domains is conceivable. Cysteamine-QDs were found to be the least cytotoxic, while D-penicillamine-QDs reduced the mitochondrial activity of MDCKII by 20-25%. Although the cell vitality appeared unaffected (assessed from the changes in mitochondrial activity using a classical MTS assay after 24 h of exposure), the binding of QDs to the cellular interior and their movement across cytoskeletal filaments (captured and characterized by single-particle tracking), was shown to compromise the integrity of the cytoskeletal and plasma membrane dynamics, as evidenced by electric cell-substrate impedance sensing.
Collapse
Affiliation(s)
- Vladimir V Breus
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | - Anna Pietuch
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, 37077 Goettingen, Germany
| | - Marco Tarantola
- Max-Planck-Institute for Dynamics and Self-Organization (MPIDS), Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Am Fassberg 17, 37077 Goettingen, Germany
| | - Thomas Basché
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 11, 55128 Mainz, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, 37077 Goettingen, Germany
| |
Collapse
|
11
|
Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells. Cell Biochem Biophys 2013; 67:1171-9. [DOI: 10.1007/s12013-013-9630-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kim Y, Pourgholami MH, Morris DL, Lu H, Stenzel MH. Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomater Sci 2013; 1:265-275. [DOI: 10.1039/c2bm00096b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Moeller JB, Nielsen MJ, Reichhardt MP, Schlosser A, Sorensen GL, Nielsen O, Tornøe I, Grønlund J, Nielsen ME, Jørgensen JS, Jensen ON, Mollenhauer J, Moestrup SK, Holmskov U. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response. THE JOURNAL OF IMMUNOLOGY 2012; 188:2399-409. [PMID: 22279103 DOI: 10.4049/jimmunol.1103150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.
Collapse
Affiliation(s)
- Jesper B Moeller
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Luppi P, Geng X, Cifarelli V, Drain P, Trucco M. C-peptide is internalised in human endothelial and vascular smooth muscle cells via early endosomes. Diabetologia 2009; 52:2218-28. [PMID: 19662378 DOI: 10.1007/s00125-009-1476-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/01/2009] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS There is increasing evidence that C-peptide exerts intracellular effects in a variety of cells and could be beneficial in patients with type 1 diabetes. Exactly how C-peptide achieves these effects, however, is unknown. Recent reports showed that C-peptide internalised in the cytoplasm of HEK-293 and Swiss 3T3 cells, where it was not degraded for at least 1 h after uptake. In this study, we investigated the hypothesis that C-peptide is internalised via an endocytic pathway and traffics to classic endocytic organelles, such as endosomes and lysosomes. METHODS We studied the internalisation of C-peptide in vascular endothelial and smooth muscle cells, two relevant targets of C-peptide activity, by using Alexa Fluor-labelled C-peptide probes in living cells and immunohistochemistry employing confocal laser-scanning microscopy. To examine trafficking to subcellular compartments, we used fluorescent constructs tagged to RAB5A, member RAS oncogene family (RAB5A) to identify early endosomes, or to lysosomal-associated membrane protein 1 (LAMP1) to identify lysosomes. RESULTS C-peptide internalised in the cytoplasm of cells within punctate structures identified as early endosomes. Internalisation was clearly detectable after 10 min of incubation and was blocked at 4 degrees C as well as with excess of unlabelled C-peptide. A minor fraction of vesicles, which increased with culture time, co-localised with lysosomes. Uptake of C-peptide was reduced by monodansylcadaverine, a pharmacological compound that blocks clathrin-mediated endocytosis, and by nocodazole, which disrupts microtubule assembly. CONCLUSIONS/INTERPRETATION C-peptide internalises in the cytoplasm of cells by endocytosis, as demonstrated by its localisation in early endosomes. Endosomes might represent a signalling station, through which C-peptide might achieve its cellular effects.
Collapse
Affiliation(s)
- P Luppi
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, PA 15201, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
SUMMARY A trispanning orphan receptor (TOR) has been described in Schistosoma haematobium and S. mansoni. Here we report the complete molecular organization of the S. mansoni TOR gene, also known as SmCRIT (complement C2 receptor inhibitor trispanning). The SmTOR gene consists of 4 exons and 3 introns as shown by cloning the single exons from S. mansoni genomic DNA and the corresponding cDNA from the larval stage (cercaria) and the adult worm. The SmTOR ORF consists of 1260 bp and is longer than previously reported, with a fourth trans-membrane domain (proposed new name: Tetraspanning Orphan Receptor) and with, however, an unchanged C2-binding domain on the extracellular domain 1 (ed1). This domain differs in S. japonicum. A protein at the approximate expected molecular weight (55 kDa) was detected in adult worm extracts with polyclonal and monoclonal antibodies, and was found to be expressed on the tegumental surface of cercariae.
Collapse
|
16
|
Saovapakhiran A, D’Emanuele A, Attwood D, Penny J. Surface Modification of PAMAM Dendrimers Modulates the Mechanism of Cellular Internalization. Bioconjug Chem 2009; 20:693-701. [DOI: 10.1021/bc8002343] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Angkana Saovapakhiran
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Antony D’Emanuele
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - David Attwood
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Jeffrey Penny
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| |
Collapse
|
17
|
Cestari IDS, Evans-Osses I, Freitas JC, Inal JM, Ramirez MI. Complement C2 receptor inhibitor trispanning confers an increased ability to resist complement-mediated lysis in Trypanosoma cruzi. J Infect Dis 2008; 198:1276-83. [PMID: 18781865 DOI: 10.1086/592167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ability to resist complement differs between the Y and Colombiana Trypanosoma cruzi strains. We found that the Y strain of T. cruzi was more able to resist the classical and lectin pathways of complement activation than the Colombiana strain. The complement C2 receptor inhibitor trispanning gene (CRIT) is highly conserved in both strains. At the protein level, CRIT is expressed only in stationary-phase epimastigotes of the Y but not the Colombiana strain and is expressed in infectious metacyclic trypomastigotes of both strains. Y strain epimastigotes with an overexpressed CRIT gene (pTEX-CRIT) had higher survival in normal human serum (NHS). Overexpression of the Y strain CRIT gene in Colombiana epimastigote forms increased the parasite's resistance to lysis mediated by the classical and lectin pathways but not to lysis mediated by alternative pathways. CRIT involvement on the parasite surface was confirmed by showing that the lytic activity of NHS against epimastigotes could be restored by adding excess C2.
Collapse
Affiliation(s)
- Igor Dos S Cestari
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
18
|
Ravindran S, Narayanan K, Eapen AS, Hao J, Ramachandran A, Blond S, George A. Endoplasmic reticulum chaperone protein GRP-78 mediates endocytosis of dentin matrix protein 1. J Biol Chem 2008; 283:29658-70. [PMID: 18757373 DOI: 10.1074/jbc.m800786200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dentin matrix protein 1 (DMP1), a phosphorylated protein present in the mineral phase of both vertebrates and invertebrates, is a key regulatory protein during biogenic formation of mineral deposits. Previously we showed that DMP1 is localized in the nuclear compartment of preosteoblasts and preodontoblasts. In the nucleus DMP1 might play an important role in the regulation of genes that control osteoblast or odontoblast differentiation. Here, we show that cellular uptake of DMP1 occurs through endocytosis. Interestingly, this process is initiated by DMP1 binding to the glucose-regulated protein-78 (GRP-78) localized on the plasma membrane of preodontoblast cells. Binding of DMP1 to GRP-78 receptor was determined to be specific and saturable with a binding dissociation constant K(D)=85 nm. We further depict a road map for the endocytosed DMP1 and demonstrate that the internalization is mediated primarily by caveolae and that the vesicles containing DMP1 are routed to the nucleus along microtubules. Immunohistochemical analysis and binding studies performed with biotin-labeled DMP1 confirm spatial co-localization of DMP1 and GRP-78 in the preodontoblasts of a developing mouse molar. Co-localization of DMP1 with GRP-78 was also observed in T4-4 preodontoblast cells, dental pulp stem cells, and primary preodontoblasts. By small interfering RNA techniques, we demonstrate that the receptor for DMP1 is GRP-78. Therefore, binding of DMP1 with GRP-78 receptor might be an important mechanism by which DMP1 is internalized and transported to the nucleus during bone and tooth development.
Collapse
Affiliation(s)
- Sriram Ravindran
- Department of Oral Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 2008; 440:15-33. [PMID: 18369934 DOI: 10.1007/978-1-59745-178-9_2] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Eukaryotic cells constantly form and internalize plasma membrane vesicles in a process known as endocytosis. Endocytosis serves a variety of housekeeping and specialized cellular functions, and it can be mediated by distinct molecular pathways. Among them, internalization via clathrin-coated pits, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis are the most extensively characterized. The major endocytic pathways are usually distinguished on the basis of their differential sensitivity to pharmacological/chemical inhibitors, although the possibility of nonspecific effects of such inhibitors is frequently overlooked. This review provides a critical evaluation of the selectivity of the most widely used pharmacological inhibitors of clathrin-mediated, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis. The mechanisms of actions of these agents are described with special emphasis on their reported side effects on the alternative internalization modes and the actin cytoskeleton. The most and the least-selective inhibitors of each major endocytic pathway are highlighted.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
20
|
Lynch JA, George AM, Eisenhauer PB, Conn K, Gao W, Carreras I, Wells JM, McKee A, Ullman MD, Fine RE. Insulin degrading enzyme is localized predominantly at the cell surface of polarized and unpolarized human cerebrovascular endothelial cell cultures. J Neurosci Res 2006; 83:1262-70. [PMID: 16511862 DOI: 10.1002/jnr.20809] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin degrading enzyme (IDE) is expressed in the brain and may play an important role there in the degradation of the amyloid beta peptide (Abeta). Our results show that cultured human cerebrovascular endothelial cells (HCECs), a primary component of the blood-brain barrier, express IDE and may respond to exposure to low levels of Abeta by upregulating its expression. When radiolabeled Abeta is introduced to the medium of cultured HCECs, it is rapidly degraded to smaller fragments. We believe that this degradation is largely the result of the action of IDE, as it can be substantially blocked by the presence of insulin in the medium, a competitive substrate of IDE. No inhibition is seen when an inhibitor of neprilysin, another protease that may degrade Abeta, is present in the medium. Our evidence suggests that the action of IDE occurs outside the cell, as inhibitors of internalization fail to affect the rate of the observed degradation. Further, our evidence suggests that degradation by IDE occurs on the plasma membrane, as much of the IDE present in HCECs was biotin-labeled by a plasma membrane impermeable reagent. This activity seems to be polarity dependent, as measurement of Abeta degradation by each surface of differentiated HCECs shows greater degradation on the basolateral (brain-facing) surface. Thus, IDE could be an important therapeutic target to decrease the amount of Abeta in the cerebrovasculature.
Collapse
Affiliation(s)
- John A Lynch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|