1
|
Simpson-Lavy K, Kupiec M. Carbon Catabolite Repression in Yeast is Not Limited to Glucose. Sci Rep 2019; 9:6491. [PMID: 31019232 PMCID: PMC6482301 DOI: 10.1038/s41598-019-43032-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Cells adapt their gene expression and their metabolism in response to a changing environment. Glucose represses expression of genes involved in the catabolism of other carbon sources in a process known as (carbon) catabolite repression. However, the relationships between “poor” carbon sources is less characterized. Here we show that in addition to the well-characterized glucose (and galactose) repression of ADH2 (alcohol dehydrogenase 2, required for efficient utilization of ethanol as a carbon source), ADH2 expression is also inhibited by acetate which is produced during ethanol catabolism. Thus, repressive regulation of gene expression occurs also between “poor” carbon sources. Acetate repression of ADH2 expression is via Haa1, independently from the well-characterized mechanism of AMPK (Snf1) activation of Adr1. The response to extracellular acetate is attenuated when all three acetate transporters (Ady2, Fps1 and Jen1) are deleted, but these deletions do not affect the acetate response resulting from growth with glucose or ethanol as the carbon source. Furthermore, genetic manipulation of the ethanol catabolic pathway affects this response. Together, our results show that acetate is sensed intracellularly and that a hierarchical control of carbon sources exists even for “poor” carbon sources.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
2
|
Abstract
The growth and development of most fungi take place on a two-dimensional surface or within a three-dimensional matrix. The fungal sense of touch is therefore critical for fungi in the interpretation of their environment and often signals the switch to a new developmental state. Contact sensing, or thigmo-based responses, include thigmo differentiation, such as the induction of invasion structures by plant pathogens in response to topography; thigmonasty, where contact with a motile prey rapidly triggers its capture; and thigmotropism, where the direction of hyphal growth is guided by physical features in the environment. Like plants and some bacteria, fungi grow as walled cells. Despite the well-demonstrated importance of thigmo responses in numerous stages of fungal growth and development, it is not known how fungal cells sense contact through the relatively rigid structure of the cell wall. However, while sensing mechanisms at the molecular level are not entirely understood, the downstream signaling pathways that are activated by contact sensing are being elucidated. In the majority of cases, the response to contact is complemented by chemical cues and both are required, either sequentially or simultaneously, to elicit normal developmental responses. The importance of a sense of touch in the lifestyles and development of diverse fungi is highlighted in this review, and the candidate molecular mechanisms that may be involved in fungal contact sensing are discussed.
Collapse
|
3
|
Iida K, Teng J, Cho T, Yoshikawa-Kimura S, Iida H. Post-translational processing and membrane translocation of the yeast regulatory Mid1 subunit of the Cch1/VGCC/NALCN cation channel family. J Biol Chem 2017; 292:20570-20582. [PMID: 29042437 PMCID: PMC5733593 DOI: 10.1074/jbc.m117.810283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Saccharomyces cerevisiae Mid1 is composed of 548 amino acids and a regulatory subunit of Cch1, a member of the eukaryotic pore-forming, four-domain cation channel family. The amino acid sequence and voltage insensitivity of Cch1 are more similar to those of Na+ leak channel non-selective (NALCN) than to the α1 subunit of voltage-gated Ca2+ channels (VGCCs). Despite a lack in overall primary sequence similarity, Mid1 resembles in some aspects VGCC α2/δ regulatory subunits and NALCN-associated proteins. Unlike animal α2/δ subunits, Mid1 and NALCN-associated proteins are essential for the function of the pore-forming subunit. We herein investigated the processing and membrane translocation of Mid1. Mid1 was found to have a 20-amino-acid-long N-terminal signal peptide and appeared to be entirely localized extracellularly. A signal peptide-deleted Mid1 protein, Mid1ΔN23, was N-glycosylated and retained Ca2+ influx activity through Cch1. Moreover, an N-terminal truncation analysis revealed that even truncated Mid1 lacking 209 N-terminal amino acid residues was N-glycosylated and maintained Ca2+ influx activity. A 219-amino-acid-truncated Mid1 protein lost this activity but was still N-glycosylated. In the sec71Δ and sec72Δ single mutants defective in the post-translational protein transport into the endoplasmic reticulum (ER), Mid1ΔN23 could not mediate Ca2+ influx and did not undergo N-glycosylation, whereas wild-type Mid1 exhibited normal Ca2+ influx activity and N-glycosylation in these mutants. Therefore, the signal peptide-lacking Mid1ΔN23 protein may be translocated to the ER exclusively through the post-translational protein translocation, which typically requires an N-terminal signal peptide. Mid1 may provide a tool for studying mechanisms of protein translocation into the ER.
Collapse
Affiliation(s)
- Kazuko Iida
- From the Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan and
| | - Jinfeng Teng
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| | - Toshihiko Cho
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| | - Sato Yoshikawa-Kimura
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- the Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui kita-machi, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
4
|
Vlahakis A, Lopez Muniozguren N, Powers T. Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy. J Cell Biol 2016; 215:779-788. [PMID: 27899413 PMCID: PMC5166500 DOI: 10.1083/jcb.201605030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/02/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023] Open
Abstract
Autophagy is a catabolic process that recycles cytoplasmic contents and is crucial for cell survival during stress. The target of rapamycin (TOR) kinase regulates autophagy as part of two distinct protein complexes, TORC1 and TORC2. TORC1 negatively regulates autophagy according to nitrogen availability. In contrast, TORC2 functions as a positive regulator of autophagy during amino acid starvation, via its target kinase Ypk1, by repressing the activity of the calcium-dependent phosphatase calcineurin and promoting the general amino acid control (GAAC) response. Precisely how TORC2-Ypk1 signaling regulates calcineurin within this pathway remains unknown. Here we demonstrate that activation of calcineurin requires Mid1, an endoplasmic reticulum-localized calcium channel regulatory protein implicated in the oxidative stress response. We find that normal mitochondrial respiration is perturbed in TORC2-Ypk1-deficient cells, which results in the accumulation of mitochondrial-derived reactive oxygen species that signal to Mid1 to activate calcineurin, thereby inhibiting the GAAC response and autophagy. These findings describe a novel pathway involving TORC2, mitochondrial oxidative stress, and calcium homeostasis for autophagy regulation.
Collapse
Affiliation(s)
- Ariadne Vlahakis
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Nerea Lopez Muniozguren
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| |
Collapse
|
5
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Abstract
Calcium is an essential cation for a cell. This cation participates in the regulation of numerous processes in either prokaryotes or eukaryotes, from bacteria to humans. Saccharomyces cerevisiae has served as a model organism to understand calcium homeostasis and calcium-dependent signaling in fungi. In this chapter it will be reviewed known and predicted transport mechanisms that mediate calcium homeostasis in the yeast. How and when calcium enters the cell, how and where it is stored, when is reutilized, and finally secreted to the environment to close the cycle. As a second messenger, maintenance of a controlled free intracellular calcium concentration is important for mediating transcriptional regulation. Many environmental stimuli modify the concentration of cytoplasmic free calcium generating the "calcium signal". This is sensed and transduced through the calmodulin/calcineurin pathway to a transcription factor, named calcineurin-responsive zinc finger, CRZ, also known as "crazy", to mediate transcriptional regulation of a large number of genes of diverse pathways including a negative feedback regulation of the calcium homeostasis system.
Collapse
Affiliation(s)
- Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
7
|
de Castro PA, Chiaratto J, Winkelströter LK, Bom VLP, Ramalho LNZ, Goldman MHS, Brown NA, Goldman GH. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. PLoS One 2014; 9:e103957. [PMID: 25083783 PMCID: PMC4118995 DOI: 10.1371/journal.pone.0103957] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022] Open
Abstract
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ΔcchA and ΔmidA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ΔcchA strain was rescued by the exogenous addition of CaCl2. The ΔcchA, ΔmidA, and ΔcchA ΔmidA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca2+ through the addition of the Ca2+-chelator EGTA impacted upon the growth of the ΔcchA and ΔmidA strains. All the A. fumigatus ΔcchA, ΔmidA, and ΔyvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ΔcchA, ΔmidA, and ΔyvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Chiaratto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lizziane K. Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Laboratory of Science and Technology of Bioethanol (CTBE), Campinas, Brazil
- * E-mail:
| |
Collapse
|
8
|
Cch1 and Mid1 are functionally required for vegetative growth under low-calcium conditions in the phytopathogenic ascomycete Botrytis cinerea. EUKARYOTIC CELL 2013; 12:712-24. [PMID: 23475703 DOI: 10.1128/ec.00338-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the filamentous phytopathogen Botrytis cinerea, the Ca(2+)/calcineurin signaling cascade has been shown to play an important role in fungal growth, differentiation, and virulence. This study deals with the functional characterization of two components of this pathway, the putative calcium channel proteins Cch1 and Mid1. The cch1 and mid1 genes were deleted, and single and double knockout mutants were analyzed during different stages of the fungal life cycle. Our data indicate that Cch1 and Mid1 are functionally required for vegetative growth under conditions of low extracellular calcium, since the growth of both deletion mutants is strongly impaired when they are exposed to the Ca(2+)-chelating agents EGTA and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The impact of external Ca(2+) was investigated by supplementing with CaCl(2) and the ionophore A23187, both of which resulted in elevated growth for all mutants. However, deletion of either gene had no impact on germination, sporulation, hyphal morphology, or virulence. By use of the aequorin reporter system to measure intracellular calcium levels, no differences between the mutant strains and the wild type were obtained. Localization studies revealed a subcellular distribution of the Mid1-green fluorescent protein (GFP) fusion protein in network-like filaments, probably the endoplasmic reticulum (ER) membranes, indicating that Mid1 is not a plasma membrane-located calcium channel in B. cinerea.
Collapse
|
9
|
Zanni E, Franco M, Nakano M, Iida H, Palleschi C, Uccelletti D. KlMID1, a relevant key player between endoplasmic reticulum homeostasis and mitochondrial dysfunction in Kluyveromyces lactis. Microbiology (Reading) 2012; 158:1694-1701. [DOI: 10.1099/mic.0.056283-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Elena Zanni
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| | - Milena Franco
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| | - Masataka Nakano
- Department Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- Department Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Claudio Palleschi
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| | - Daniela Uccelletti
- Department Biology and Biotechnology University of Rome LA SAPIENZA, 00185 Rome, Italy
| |
Collapse
|
10
|
Zanni E, Farina F, Ricci A, Mancini P, Frank C, Palleschi C, Uccelletti D. The Golgi alpha-1,6 mannosyltransferase KlOch1p of Kluyveromyces lactis is required for Ca2+/calmodulin-based signaling and for proper mitochondrial functionality. BMC Cell Biol 2009; 10:86. [PMID: 20003441 PMCID: PMC2797761 DOI: 10.1186/1471-2121-10-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/14/2009] [Indexed: 01/03/2023] Open
Abstract
Background Protein N-glycosylation is a relevant metabolic pathway in eukaryotes and plays key roles in cell processes. In yeasts, outer chain branching is initiated in the Golgi apparatus by the alpha-1,6-mannosyltransferase Och1p. Results Here we report that, in Kluyveromyces lactis, this glycosyltransferase is also required to maintain functional mitochondria and calcium homeostasis. Cells carrying a mutation in KlOCH1 gene showed altered mitochondrial morphology, increased accumulation of ROS and reduced expression of calcium signalling genes such as calmodulin and calcineurin. Intracellular calcium concentration was also reduced in the mutant cells with respect to the wild type counterparts. Phenotypes that occur in cells lacking the alpha-1,6-mannosyltransferase, including oxidative stress and impaired mitochondria functionality, were suppressed by increased dosage of KlCmd1p. This, in turn, acts through the action of calcineurin. Conclusions Proper functioning of the alpha-1,6-mannosyltransferase in the N-glycosylation pathway of K. lactis is required for maintaining normal calcium homeostasis; this is necessary for physiological mitochondria dynamics and functionality.
Collapse
Affiliation(s)
- Elena Zanni
- Dpt, Developmental and Cell Biology, University LA SAPIENZA, P.le. A. Moro, 500185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Deletion of Mid1, a putative stretch-activated calcium channel in Claviceps purpurea, affects vegetative growth, cell wall synthesis and virulence. Microbiology (Reading) 2009; 155:3922-3933. [DOI: 10.1099/mic.0.030825-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The putative Claviceps purpurea homologue of the Saccharomyces cerevisiae stretch-activated calcium ion channel Mid1 was investigated for its role in vegetative growth, differentiation and pathogenicity on rye (Secale cereale). Gene replacement mutants of Cl. purpurea mid1 were not affected in polar growth and branching in axenic culture but showed a significantly reduced growth rate. The growth defect could not be complemented by Ca2+ supplementation, in contrast to mid1 mutants in yeast, but the altered sensitivity of the mutants to changes in external and internal Ca2+ concentrations indicates some role of Mid1 in Ca2+ homeostasis. The major effect of mid1 deletion, however, was the complete loss of virulence: infected rye plants showed no disease symptoms at all. Detailed analyses of in vitro-infected rye ovaries demonstrated that the Δmid1 mutants had multiple apical branches and were unable to infect the host tissue, suggesting that Mid1 is essential for generating the necessary mechanical force for penetration. This is believed to be the first report of an essential role for a Mid1 homologue in the virulence of a plant-pathogenic fungus.
Collapse
|
12
|
Brand A, Lee K, Veses V, Gow NAR. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 2009; 71:1155-64. [PMID: 19154328 PMCID: PMC2680325 DOI: 10.1111/j.1365-2958.2008.06592.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyphae of the dimorphic fungus, Candida albicans, exhibit directional tip responses when grown in contact with surfaces. On hard surfaces or in liquid media, the trajectory of hyphal growth is typically linear, with tip re-orientation events limited to encounters with topographical features (thigmotropism). In contrast, when grown on semisolid surfaces, the tips of C. albicans hyphae grow in an oscillatory manner to form regular two-dimensional sinusoidal curves and three-dimensional helices. We show that, like thigmotropism, initiation of directional tip oscillation in C. albicans hyphae is severely attenuated when Ca2+ homeostasis is perturbed. Chelation of extracellular Ca2+ or deletion of the Ca2+ transporters that modulate cytosolic [Ca2+] (Mid1, Cch1 or Pmr1) did not affect hyphal length but curve formation was severely reduced in mid1Delta and cch1Delta and abolished in pmr1Delta. Sinusoidal hypha morphology was altered in the mid1Delta, chs3Delta and heterozygous pmr1Delta/PMR1 strains. Treatments that affect cell wall integrity, changes in surface mannosylation or the provision of additional carbon sources had significant but less pronounced effects on oscillatory growth. The induction of two- and three-dimensional sinusoidal growth in wild-type C. albicans hyphae is therefore the consequence of mechanisms that involve Ca2+ influx and signalling rather than gross changes in the cell wall architecture.
Collapse
Affiliation(s)
- Alexandra Brand
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
13
|
Lew RR, Abbas Z, Anderca MI, Free SJ. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. EUKARYOTIC CELL 2008; 7:647-55. [PMID: 18296620 PMCID: PMC2292622 DOI: 10.1128/ec.00411-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/12/2008] [Indexed: 12/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H(+)-ATPase (measured by cyanide [CN(-)]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca(2+) levels or when cytoplasmic Ca(2+) is elevated with the Ca(2+) ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca(2+) homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
14
|
Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 2007; 17:347-52. [PMID: 17275302 PMCID: PMC1885950 DOI: 10.1016/j.cub.2006.12.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/08/2006] [Accepted: 12/12/2006] [Indexed: 01/14/2023]
Abstract
Eukaryotic cells from fungal hyphae to neurites that grow by polarized extension must coordinate cell growth and cell orientation to enable them to exhibit growth tropisms and to respond to relevant environmental cues. Such cells generally maintain a tip-high Ca2+ cytoplasmic gradient, which is correlated with their ability to exhibit polarized tip growth and to respond to growth-directing extracellular signals 1, 2, 3, 4, 5. In yeast and other fungi, the polarisome, exocyst, Arp2/3, and Spitzenkörper protein complexes collectively orchestrate tip growth and cell polarity, but it is not clear whether these molecular complexes also regulate cell orientation or whether they are influenced by cytoplasmic Ca2+ gradients. Hyphae of the human pathogenic fungus Candida albicans reorient their growth axis in response to underlying surface topography (thigmotropism) [6] and imposed electric fields (galvanotropism) [7]. The establishment and maintenance of directional growth in relation to these environmental cues was Ca2+ dependent. Tropisms were attenuated in media containing low Ca2+, or calcium-channel blockers, and in mutants where calcium channels or elements of the calcium signaling pathway were deleted. Therefore galvanotropism and thigmotropism may both be mediated by localized Ca2+ influx at sites of polarized growth via Ca2+ channels that are activated by appropriate environmental signals.
Collapse
Affiliation(s)
- Alexandra Brand
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Scott Shanks
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Vanessa M.S. Duncan
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Meng Yang
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Neil A.R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
- Corresponding author
| |
Collapse
|