1
|
Zhao Z, Wang M, Miller MC, He Z, Xu X, Zhou Y, Mayo KH, Tai G. Isomerization of proline-46 in the N-terminal tail of galectin-3 enhances T cell apoptosis via the ROS-ERK pathway. Int J Biol Macromol 2024; 256:128304. [PMID: 37992938 DOI: 10.1016/j.ijbiomac.2023.128304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Galectin-3 (Gal-3) is unique in the galectin family, due to the presence of a long N-terminal tail (NT) arising from its conserved carbohydrate recognition domain (CRD). Although functional significance of the NT has remained elusive, our previous studies demonstrated the importance of NT prolines to Gal-3 function. Here, we show that during the time Gal-3 stands in solution for three or more days, Gal-3 NT undergoes a slow, intra-molecular, time-dependent conformational/dynamical change associated with proline cis-trans isomerization. From initial dissolution of Gal-3 in buffer to three days in solution, Gal-3-mediated T cell apoptosis is enhanced from 23 % to 37 %. Western blotting and flow cytometry show that the enhancement occurs via the ROS-ERK pathway, and not by the PKC-ERK pathway. To assess which proline(s) is (are) responsible for this effect, we individually mutated all 14 NT prolines within the first 68 residues to alanines, and assessed their effect on ROS production. Our study shows that isomerization of P46 alone is responsible for the upregulation of ROS and T cell apoptosis. NMR studies show that this unique effect is mediated by a change in dynamic interactions between the NT and CRD F-face, which in turn leads to this change in Gal-3 function.
Collapse
Affiliation(s)
- Zihan Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Menghui Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhen He
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Establishment of a Murine Pro-acinar Cell Line to Characterize Roles for FGF2 and α3β1 Integrins in Regulating Pro-acinar Characteristics. Sci Rep 2019; 9:10984. [PMID: 31358811 PMCID: PMC6662831 DOI: 10.1038/s41598-019-47387-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy for head and neck cancers results in permanent damage to the saliva producing acinar compartment of the salivary gland. To date, a pure pro-acinar cell line to study underlying mechanisms of acinar cell differentiation in culture has not been described. Here, we report the establishment of a pro-acinar (mSG-PAC1) and ductal (mSG-DUC1) cell line, from the murine submandibular salivary gland (SMG), which recapitulate developmental milestones in differentiation. mSG-DUC1 cells express the ductal markers, keratin-7 and keratin-19, and form lumenized spheroids. mSG-PAC1 cells express the pro-acinar markers SOX10 and aquaporin-5. Using the mSG-PAC1 cell line, we demonstrate that FGF2 regulates specific steps during acinar cell maturation. FGF2 up-regulates aquaporin-5 and the expression of the α3 and α6 subunits of the α3β1 and α6β1 integrins that are known to promote SMG morphogenesis and differentiation. mSG-DUC1 and mSG-PAC1 cells were derived from genetically modified mice, homozygous for floxed alleles of the integrin α3 subunit. Similar to SMGs from α3-null mice, deletion of α3 alleles in mSG-PAC1 cells results in the up-regulation of E-cadherin and the down-regulation of CDC42. Our data indicate that mSG-DUC1 and mSG-PAC1 cells will serve as important tools to gain mechanistic insight into salivary gland morphogenesis and differentiation.
Collapse
|
3
|
Miller MC, Zheng Y, Yan J, Zhou Y, Tai G, Mayo KH. Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology 2018; 27:1038-1051. [PMID: 28973299 DOI: 10.1093/glycob/cwx071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Interactions between galectins and polysaccharides are crucial to many biological processes, and yet these are some of the least understood, usually being limited to studies with small saccharides and short oligosaccharides. The present study is focused on human galectin-3 (Gal-3) interactions with a 60 kDa rhamnogalacturonan RG-I-4 that we use as a model to garner information as to how galectins interact with large polysaccharides, as well as to develop this agent as a therapeutic against human disease. Gal-3 is unique among galectins, because as the only chimera-type, it has a long N-terminal tail (NT) that has long puzzled investigators due to its dynamic, disordered nature and presence of numerous prolines. Here, we use 15N-1H heteronuclear single quantum coherence NMR spectroscopy to demonstrate that multiple sites on RG-I-4 provide epitopes for binding to three sites on 15N-labeled Gal-3, two within its carbohydrate recognition domain (CRD) and one at a novel site within the NT encompassing the first 40 residues that are highly conserved among all species of Gal-3. Moreover, strong binding of RG-I-4 to the Gal-3 NT occurs on a very slow time scale, suggesting that it may be mediated by cis-trans proline isomerization, a well-recognized modulator of many biological activities. The NT binding epitope within RG-I-4 appears to reside primarily in the side chains of the polysaccharide, some of which are galactans. Our results provide new insight into the role of the NT in Gal-3 function.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Y Zheng
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Jingmin Yan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Guihua Tai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Computational Insight into Protein Tyrosine Phosphatase 1B Inhibition: A Case Study of the Combined Ligand- and Structure-Based Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:4245613. [PMID: 29441120 PMCID: PMC5758944 DOI: 10.1155/2017/4245613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an attractive target for treating cancer, obesity, and type 2 diabetes. In our work, the way of combined ligand- and structure-based approach was applied to analyze the characteristics of PTP1B enzyme and its interaction with competitive inhibitors. Firstly, the pharmacophore model of PTP1B inhibitors was built based on the common feature of sixteen compounds. It was found that the pharmacophore model consisted of five chemical features: one aromatic ring (R) region, two hydrophobic (H) groups, and two hydrogen bond acceptors (A). To further elucidate the binding modes of these inhibitors with PTP1B active sites, four docking programs (AutoDock 4.0, AutoDock Vina 1.0, standard precision (SP) Glide 9.7, and extra precision (XP) Glide 9.7) were used. The characteristics of the active sites were then described by the conformations of the docking results. In conclusion, a combination of various pharmacophore features and the integration information of structure activity relationship (SAR) can be used to design novel potent PTP1B inhibitors.
Collapse
|
5
|
Hilmarsdottir B, Briem E, Halldorsson S, Kricker J, Ingthorsson S, Gustafsdottir S, Mælandsmo GM, Magnusson MK, Gudjonsson T. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells. Cell Death Dis 2017; 8:e2769. [PMID: 28492548 PMCID: PMC5520702 DOI: 10.1038/cddis.2017.177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.
Collapse
Affiliation(s)
- Bylgja Hilmarsdottir
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital Nydalen, Oslo, Norway
| | - Eirikur Briem
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | | | - Jennifer Kricker
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Sævar Ingthorsson
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Sigrun Gustafsdottir
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital Nydalen, Oslo, Norway
| | - Magnus K Magnusson
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Department of Medical Faculty, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology Landspitali, University Hospital, Reykjavik, Iceland
| |
Collapse
|
6
|
Penney RB, Roy D. Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:60-79. [PMID: 23466753 DOI: 10.1016/j.bbcan.2013.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/27/2022]
Abstract
Resistance to endocrine therapy in breast carcinogenesis due to the redox regulation of the signal transduction system by reactive oxygen species (ROS) is the subject of this review article. Both antiestrogens and aromatase inhibitors are thought to prevent cancer through modulating the estrogen receptor function, but other mechanisms cannot be ruled out as these compounds also block metabolism and redox cycling of estrogen and are free radical scavengers. Endocrine therapeutic agents, such as, tamoxifen and other antiestrogens, and the aromatase inhibitor, exemestane, are capable of producing ROS. Aggressive breast cancer cells have high oxidative stress and chronic treatment with exemestane, fulvestrant or tamoxifen may add additional ROS stress. Breast cancer cells receiving long-term antiestrogen treatment appear to adapt to this increased persistent level of ROS. This, in turn, may lead to the disruption of reversible redox signaling that involves redox-sensitive phosphatases, protein kinases, such as, ERK and AKT, and transcription factors, such as, AP-1, NRF-1 and NF-κB. Thioredoxin modulates the expression of estrogen responsive genes through modulating the production of H2O2 in breast cancer cells. Overexpressing thioredoxine reductase 2 and reducing oxidized thioredoxin restores tamoxifen sensitivity to previously resistant breast cancer cells. In summary, it appears that resistance to endocrine therapy may be mediated, in part, by ROS-mediated dysregulation of both estrogen-dependent and estrogen-independent redox-sensitive signaling pathways. Further studies are needed to define the mechanism of action of thioredoxin modifiers, and their effect on the redox regulation that contributes to restoring the antiestrogen-mediated signal transduction system and growth inhibitory action.
Collapse
Affiliation(s)
- Rosalind Brigham Penney
- Department of Environmental and Occupational Health, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|