1
|
Bogard B, Bonnet H, Boyarchuk E, Tellier G, Furling D, Mouly V, Francastel C, Hubé F. Small nucleolar RNAs promote the restoration of muscle differentiation defects in cells from myotonic dystrophy type 1. Nucleic Acids Res 2025; 53:gkaf232. [PMID: 40156865 PMCID: PMC11954525 DOI: 10.1093/nar/gkaf232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Recently, the repertoire of human small nucleolar noncoding RNAs (snoRNAs) and their potential functions has expanded with the discovery of new snoRNAs and messenger RNA (mRNA) targets, for which snoRNA-guided modifications may influence their stability, translatability, and splicing. We previously identified snoRNAs that are abundant in healthy human muscle progenitor cells. In this study, we demonstrated that SNORA40 and SNORA70 loss-of-function impairs myogenic differentiation. Interestingly, gain-of-function can rescue impaired differentiation muscle progenitor cells in myotonic dystrophy type 1 (DM1). We identified cyclin D3 (CCND3) mRNA, which is partially located in the nucleolus, as a target for SNORA40 and SNORA70, which are required for its pseudouridylated status. Expression of the CCND3 protein is required for muscle progenitors to exit the cell-cycle when they are induced to differentiate. We revealed that this switch requires SNORA40/70. Finally, we observed that DM1 cells show reduced levels of SNORA40/70 and undetectable CCND3 protein. However, restoring normal levels of SNORA40/70 partially restored CCND3 protein expression, coinciding with improved cell fusion capacity in DM1 muscle progenitors. Collectively, these data suggest that this effect may stem from SNORA40/70-dependent pseudouridylation of CCND3 mRNA, emphasizing snoRNAs as key players in normal and pathological muscle differentiation.
Collapse
Affiliation(s)
- Baptiste Bogard
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Hélène Bonnet
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Gilles Tellier
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l’Hôpital, 75013 Paris, France
| | - Claire Francastel
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Florent Hubé
- Université de Paris Cité, CNRS, UMR7216 Épigénétique et Destin Cellulaire, F-75013 Paris, France
- Sorbonne Université, CNRS UMR7622, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, 75005 Paris, France
| |
Collapse
|
2
|
Casalin I, Ceneri E, Ratti S, Manzoli L, Cocco L, Follo MY. Nuclear Phospholipids and Signaling: An Update of the Story. Cells 2024; 13:713. [PMID: 38667329 PMCID: PMC11048846 DOI: 10.3390/cells13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.C.); (E.C.); (S.R.); (L.M.); (M.Y.F.)
| | | |
Collapse
|
3
|
Nakamori M. Expanded‐repeat‐RNA‐mediated disease mechanisms in myotonic dystrophy. NEUROLOGY AND CLINICAL NEUROSCIENCE 2024; 12:16-23. [DOI: 10.1111/ncn3.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2025]
Abstract
AbstractMyotonic dystrophy (DM) is the most common muscular dystrophy in adults, affecting skeletal muscle as well as cardiac and smooth muscle. Furthermore, involvement of the central nervous system, endocrine organs, and eyes is often seen, with debilitating consequences. The condition is an autosomal‐dominant inherited genetic disease caused by abnormal genomic expansion of tandem repeats. Myotonic dystrophy type 1 (DM1) results from expansion of a CTG repeat in the 3′‐untranslated region of the gene encoding dystrophia myotonica‐protein kinase (DMPK), whereas myotonic dystrophy type 2 (DM2) is caused by expansion of a CCTG repeat in the first intron of the gene encoding CCHC‐type zinc finger nucleic acid‐binding protein (CNBP). Both types of DM exhibit abnormal mRNA transcribed from the mutated gene containing expanded repeats, which exert toxic gain‐of‐function effects on various proteins involved in cellular processes such as alternative splicing, signaling pathways, and cellular senescence. The present review discusses the expanded‐repeat‐RNA‐mediated molecular pathomechanisms in DM.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
4
|
Lutz M, Levanti M, Karns R, Gourdon G, Lindquist D, Timchenko NA, Timchenko L. Therapeutic Targeting of the GSK3β-CUGBP1 Pathway in Myotonic Dystrophy. Int J Mol Sci 2023; 24:10650. [PMID: 37445828 PMCID: PMC10342152 DOI: 10.3390/ijms241310650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3β-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3β-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3β-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.
Collapse
Affiliation(s)
- Maggie Lutz
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Miranda Levanti
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
| | - Rebekah Karns
- Departments of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Genevieve Gourdon
- Sorbonne Université, Inserm, institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France;
| | - Diana Lindquist
- Imagine Research Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Nikolai A. Timchenko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
- Department of Surgery, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; (M.L.); (M.L.)
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA;
| |
Collapse
|
5
|
Costa A, Cruz AC, Martins F, Rebelo S. Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043091. [PMID: 36834509 PMCID: PMC9965115 DOI: 10.3390/ijms24043091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.
Collapse
|
6
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
7
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
8
|
Ladewig E, Michelini F, Jhaveri K, Castel P, Carmona J, Fairchild L, Zuniga AG, Arruabarrena-Aristorena A, Cocco E, Blawski R, Kittane S, Zhang Y, Sallaku M, Baldino L, Hristidis V, Chandarlapaty S, Abdel-Wahab O, Leslie C, Scaltriti M, Toska E. The Oncogenic PI3K-Induced Transcriptomic Landscape Reveals Key Functions in Splicing and Gene Expression Regulation. Cancer Res 2022; 82:2269-2280. [PMID: 35442400 PMCID: PMC9354703 DOI: 10.1158/0008-5472.can-22-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K. These analyses uncovered widespread alternatively spliced isoforms linked to proliferation, metabolism, and splicing in PIK3CA-mutant cells, which were reversed by inhibition of PI3Kα. Analysis of paired tumor biopsies from patients with PIK3CA-mutated breast cancer undergoing treatment with PI3Kα inhibitors identified widespread splicing alterations that affect specific isoforms in common with the preclinical models, and these alterations, namely PTK2/FRNK and AFMID isoforms, were validated as functional drivers of cancer cell growth or migration. Mechanistically, isoform-specific splicing factors mediated PI3K-dependent RNA splicing. Treatment with splicing inhibitors rendered breast cancer cells more sensitive to the PI3Kα inhibitor alpelisib, resulting in greater growth inhibition than alpelisib alone. This study provides the first comprehensive analysis of widespread splicing alterations driven by oncogenic PI3K in breast cancer. The atlas of PI3K-mediated splicing programs establishes a key role for the PI3K pathway in regulating splicing, opening new avenues for exploiting PI3K signaling as a therapeutic vulnerability in breast cancer. SIGNIFICANCE Transcriptomic analysis reveals a key role for the PI3K pathway in regulating RNA splicing, uncovering new mechanisms by which PI3K regulates proliferation and metabolism in breast cancer. See related commentary by Claridge and Hopkins, p. 2216.
Collapse
Affiliation(s)
- Erik Ladewig
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Flavia Michelini
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pau Castel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Javier Carmona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lauren Fairchild
- Weill Cornell Medical College, New York, New York
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, New York
| | - Adler G. Zuniga
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Baltimore, Maryland
| | - Amaia Arruabarrena-Aristorena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Translational prostate cancer Research lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Emiliano Cocco
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Ryan Blawski
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Baltimore, Maryland
| | - Srushti Kittane
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Yuhan Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Mirna Sallaku
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Baldino
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vasilis Hristidis
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eneda Toska
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland
| |
Collapse
|
9
|
Kajdasz A, Niewiadomska D, Sekrecki M, Sobczak K. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression. Sci Rep 2022; 12:190. [PMID: 34996980 PMCID: PMC8742084 DOI: 10.1038/s41598-021-03901-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
CUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5' and 3' untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5'UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5'UTRs and 3'UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5' and 3' UTR isoforms within CELF1 mRNA.
Collapse
Affiliation(s)
- Arkadiusz Kajdasz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
11
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
12
|
Shen X, Liu Z, Wang C, Xu F, Zhang J, Li M, Lei Y, Wang A, Bi C, Zhu G. Inhibition of Postn Rescues Myogenesis Defects in Myotonic Dystrophy Type 1 Myoblast Model. Front Cell Dev Biol 2021; 9:710112. [PMID: 34490258 PMCID: PMC8417118 DOI: 10.3389/fcell.2021.710112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3' untranslated region (3'UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang Lei
- Wuhu Center for Disease Control and Prevention, Wuhu, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
13
|
Ozimski LL, Sabater-Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc 2020; 96:716-730. [PMID: 33269537 DOI: 10.1111/brv.12674] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most prevalent form of muscular dystrophy in adults and yet there are currently no treatment options. Although this disease causes multisystemic symptoms, it is mainly characterised by myopathy or diseased muscles, which includes muscle weakness, atrophy, and myotonia, severely affecting the lives of patients worldwide. On a molecular level, DM1 is caused by an expansion of CTG repeats in the 3' untranslated region (3'UTR) of the DM1 Protein Kinase (DMPK) gene which become pathogenic when transcribed into RNA forming ribonuclear foci comprised of auto complementary CUG hairpin structures that can bind proteins. This leads to the sequestration of the muscleblind-like (MBNL) family of proteins, depleting them, and the abnormal stabilisation of CUGBP Elav-like family member 1 (CELF1), enhancing it. Traditionally, DM1 research has focused on this RNA toxicity and how it alters MBNL and CELF1 functions as key splicing regulators. However, other proteins are affected by the toxic DMPK RNA and there is strong evidence that supports various signalling cascades playing an important role in DM1 pathogenesis. Specifically, the impairment of protein kinase B (AKT) signalling in DM1 increases autophagy, apoptosis, and ubiquitin-proteasome activity, which may also be affected in DM1 by AMP-activated protein kinase (AMPK) downregulation. AKT also regulates CELF1 directly, by affecting its subcellular localisation, and indirectly as it inhibits glycogen synthase kinase 3 beta (GSK3β), which stabilises the repressive form of CELF1 in DM1. Another kinase that contributes to CELF1 mis-regulation, in this case by hyperphosphorylation, is protein kinase C (PKC). Additionally, it has been demonstrated that fibroblast growth factor-inducible 14 (Fn14) is induced in DM1 and is associated with downstream signalling through the nuclear factor κB (NFκB) pathways, associating inflammation with this disease. Furthermore, MBNL1 and CELF1 play a role in cytoplasmic processes involved in DM1 myopathy, altering proteostasis and sarcomere structure. Finally, there are many other elements that could contribute to the muscular phenotype in DM1 such as alterations to satellite cells, non-coding RNA metabolism, calcium dysregulation, and repeat-associated non-ATG (RAN) translation. This review aims to organise the currently dispersed knowledge on the different pathways affected in DM1 and discusses the unexplored connections that could potentially help in providing new therapeutic targets in DM1 research.
Collapse
Affiliation(s)
- Lauren L Ozimski
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain.,Arthex Biotech, Catedrático Escardino, 9, Paterna, Valencia, 46980, Spain
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| |
Collapse
|
14
|
Crawford Parks TE, Marcellus KA, Péladeau C, Jasmin BJ, Ravel-Chapuis A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hum Mol Genet 2020; 29:2185-2199. [PMID: 32504084 DOI: 10.1093/hmg/ddaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
15
|
Aryal S, Viet J, Weatherbee BAT, Siddam AD, Hernandez FG, Gautier-Courteille C, Paillard L, Lachke SA. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Hum Genet 2020; 139:1541-1554. [PMID: 32594240 DOI: 10.1007/s00439-020-02195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Justine Viet
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | | | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | | | - Carole Gautier-Courteille
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France
| | - Luc Paillard
- Institut de Génétique et Développement de Rennes, Univ Rennes, CNRS, IGDR-UMR 6290, 35000, Rennes, France.
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
16
|
Timchenko L. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 21:ijms21010094. [PMID: 31877772 PMCID: PMC6982105 DOI: 10.3390/ijms21010094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.
Collapse
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
18
|
Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice. Mol Cell Biol 2019; 39:MCB.00155-19. [PMID: 31383751 DOI: 10.1128/mcb.00155-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease without cure. One of the possible therapeutic approaches for DM1 is correction of the RNA-binding proteins CUGBP1 and MBNL1, misregulated in DM1. CUGBP1 activity is controlled by glycogen synthase kinase 3β (GSK3β), which is elevated in skeletal muscle of patients with DM1, and inhibitors of GSK3 were suggested as therapeutic molecules to correct CUGBP1 activity in DM1. Here, we describe that correction of GSK3β with a small-molecule inhibitor of GSK3, tideglusib (TG), not only normalizes the GSK3β-CUGBP1 pathway but also reduces the mutant DMPK mRNA in myoblasts from patients with adult DM1 and congenital DM1 (CDM1). Correction of GSK3β in a mouse model of DM1 (HSALR mice) with TG also reduces the levels of CUG-containing RNA, normalizing a number of CUGBP1- and MBNL1-regulated mRNA targets. We also found that the GSK3β-CUGBP1 pathway is abnormal in skeletal muscle and brain of DMSXL mice, expressing more than 1,000 CUG repeats, and that the correction of this pathway with TG increases postnatal survival and improves growth and neuromotor activity of DMSXL mice. These findings show that the inhibitors of GSK3, such as TG, may correct pathology in DM1 and CDM1 via several pathways.
Collapse
|
19
|
Ratti S, Follo MY, Ramazzotti G, Faenza I, Fiume R, Suh PG, McCubrey JA, Manzoli L, Cocco L. Nuclear phospholipase C isoenzyme imbalance leads to pathologies in brain, hematologic, neuromuscular, and fertility disorders. J Lipid Res 2018; 60:312-317. [PMID: 30287524 DOI: 10.1194/jlr.r089763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/30/2018] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCβ1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCβ1 and PI-PLCɣ1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCβ1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCβ1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
20
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
21
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
22
|
Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:127-155. [PMID: 27854220 PMCID: PMC5271579 DOI: 10.3233/jnd-160153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
Collapse
Affiliation(s)
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology Basel University Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, Basel, Switzerland
| | | |
Collapse
|
23
|
Wei C, Stock L, Valanejad L, Zalewski ZA, Karns R, Puymirat J, Nelson D, Witte D, Woodgett J, Timchenko NA, Timchenko L. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J 2018; 32:2073-2085. [PMID: 29203592 DOI: 10.1096/fj.201700700r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive neuromuscular disease caused by expanded CUG repeats, which misregulate RNA metabolism through several RNA-binding proteins, including CUG-binding protein/CUGBP1 elav-like factor 1 (CUGBP1/CELF1) and muscleblind 1 protein. Mutant CUG repeats elevate CUGBP1 and alter CUGBP1 activity via a glycogen synthase kinase 3β (GSK3β)-cyclin D3-cyclin D-dependent kinase 4 (CDK4) signaling pathway. Inhibition of GSK3β corrects abnormal activity of CUGBP1 in DM1 mice [human skeletal actin mRNA, containing long repeats ( HSALR) model]. Here, we show that the inhibition of GSK3β in young HSALR mice prevents development of DM1 muscle pathology. Skeletal muscle in 1-yr-old HSALR mice, treated at 1.5 mo for 6 wk with the inhibitors of GSK3, exhibits high fiber density, corrected atrophy, normal fiber size, with reduced central nuclei and normalized grip strength. Because CUG-GSK3β-cyclin D3-CDK4 converts the active form of CUGBP1 into a form of translational repressor, we examined the contribution of CUGBP1 in myogenesis using Celf1 knockout mice. We found that a loss of CUGBP1 disrupts myogenesis, affecting genes that regulate differentiation and the extracellular matrix. Proteins of those pathways are also misregulated in young HSALR mice and in muscle biopsies of patients with congenital DM1. These findings suggest that the correction of GSK3β-CUGBP1 pathway in young HSALR mice might have a positive effect on the myogenesis over time.-Wei, C., Stock, L., Valanejad, L., Zalewski, Z. A., Karns, R., Puymirat, J., Nelson, D., Witte, D., Woodgett, J., Timchenko, N. A., Timchenko, L. Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1.
Collapse
Affiliation(s)
- Christina Wei
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Lauren Stock
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Leila Valanejad
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Zachary A Zalewski
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rebekah Karns
- Department of Bioinformatics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Jack Puymirat
- Centre Hospitalier-Université Laval Research Center, Québec City, Quebéc, Canada
| | - David Nelson
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - David Witte
- Department of Pathology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA; and
| | - Jim Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nikolai A Timchenko
- Department of Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Lubov Timchenko
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
25
|
Kim JH, Kwon HY, Ryu DH, Nam MH, Shim BS, Kim JH, Lee JY, Kim SH. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells. PLoS One 2017; 12:e0186490. [PMID: 29036189 PMCID: PMC5643113 DOI: 10.1371/journal.pone.0186490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs). Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT) assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT) dUTP Nick End Labeling (TUNEL) positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI) staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3), cleaved poly (ADP-ribose) polymerase (PARP), and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1) in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Young Kwon
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong Hoon Ryu
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ho Nam
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Han Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Ratti S, Mongiorgi S, Ramazzotti G, Follo MY, Mariani GA, Suh PG, McCubrey JA, Cocco L, Manzoli L. Nuclear Inositide Signaling Via Phospholipase C. J Cell Biochem 2017; 118:1969-1978. [PMID: 28106288 DOI: 10.1002/jcb.25894] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
Abstract
The existence of an independent nuclear inositide pathway distinct from the cytoplasmic one has been demonstrated in different physiological systems and in diseases. In this prospect we analyze the role of PI-PLCβ1 nuclear isoform in relation to the cell cycle regulation, the cell differentiation, and different physiopathological pathways focusing on the importance of the nuclear localization from both molecular and clinical point of view. PI-PLCβ1 is essential for G1/S transition through DAG and Cyclin D3 and plays also a central role in G2/M progression through Cyclin B1 and PKCα. In the differentiation process of C2C12 cells PI-PLCβ1 increases in both myogenic differentiation and osteogenic differentiation. PI-PLCβ1 and Cyclin D3 reduction has been observed in Myotonic Dystrophy (DM) suggesting a pivotal role of these enzymes in DM physiopathology. PI-PLCβ1 is also involved in adipogenesis through a double phase mechanism. Moreover, PI-PLCβ1 plays a key role in the normal hematopoietic differentiation where it seems to decrease in erythroid differentiation and increase in myeloid differentiation. In Myelodysplastic Syndromes (MDS) PI-PLCβ1 has a genetic and epigenetic relevance and it is related to MDS patients' risk of Acute Myeloid Leukemia (AML) evolution. In MDS patients PI-PLCβ1 seems to be also a therapeutic predictive outcome marker. In the central nervous system, PI-PLCβ1 seems to be involved in different pathways in both brain cortex development and synaptic plasticity related to different diseases. Another PI-PLC isozyme that could be related to nuclear activities is PI-PLCζ that is involved in infertility processes. J. Cell. Biochem. 118: 1969-1978, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia A Mariani
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville 27834, North Carolina
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
27
|
Ramazzotti G, Faenza I, Fiume R, Billi AM, Manzoli L, Mongiorgi S, Ratti S, McCubrey JA, Suh PG, Cocco L, Follo MY. PLC-β1 and cell differentiation: An insight into myogenesis and osteogenesis. Adv Biol Regul 2017; 63:1-5. [PMID: 27776973 DOI: 10.1016/j.jbior.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Phosphoinositide-phospholipase C-β1 (PLC-β1) plays a crucial role in the initiation of the genetic program responsible for muscle differentiation and osteogenesis. During myogenic differentiation of murine C2C12 myoblasts, PLC-β1 signaling pathway involves the Inositol Polyphosphate Multikinase (IPMK) and β-catenin as downstream effectors. By means of c-jun binding to cyclin D3 promoter, the activation of PLC-β1 pathway determines cyclin D3 accumulation. However, osteogenesis requires PLC-β1 expression and up-regulation but it does not affect cyclin D3 levels, suggesting that the two processes require the activation of different mediators.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Kim YK, Yadava RS, Mandal M, Mahadevan K, Yu Q, Leitges M, Mahadevan MS. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS One 2016; 11:e0163325. [PMID: 27657532 PMCID: PMC5033491 DOI: 10.1371/journal.pone.0163325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1(DM1) is the prototype for diseases caused by RNA toxicity. RNAs from the mutant allele contain an expanded (CUG)n tract within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The toxic RNAs affect the function of RNA binding proteins leading to sequestration of muscleblind-like (MBNL) proteins and increased levels of CELF1 (CUGBP, Elav-like family member 1). The mechanism for increased CELF1 is not very clear. One favored proposition is hyper-phosphorylation of CELF1 by Protein Kinase C alpha (PKCα) leading to increased CELF1 stability. However, most of the evidence supporting a role for PKC-α relies on pharmacological inhibition of PKC. To further investigate the role of PKCs in the pathogenesis of RNA toxicity, we generated transgenic mice with RNA toxicity that lacked both the PKCα and PKCβ isoforms. We find that these mice show similar disease progression as mice wildtype for the PKC isoforms. Additionally, the expression of CELF1 is also not affected by deficiency of PKCα and PKCβ in these RNA toxicity mice. These data suggest that disease phenotypes of these RNA toxicity mice are independent of PKCα and PKCβ.
Collapse
Affiliation(s)
- Yun K. Kim
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ramesh S. Yadava
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Karunasai Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Mani S. Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Vlasova-St Louis I, Bohjanen PR. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs. Cells 2016; 5:cells5010004. [PMID: 26821046 PMCID: PMC4810089 DOI: 10.3390/cells5010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP.
Collapse
Affiliation(s)
- Irina Vlasova-St Louis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Cocco L, Manzoli L, Faenza I, Ramazzotti G, Yang YR, McCubrey JA, Suh PG, Follo MY. Modulation of nuclear PI-PLCbeta1 during cell differentiation. Adv Biol Regul 2016; 60:1-5. [PMID: 26525203 DOI: 10.1016/j.jbior.2015.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
PI-PLCbeta1 plays an important role in cell differentiation, and particularly in myogenesis, osteogenesis and hematopoiesis. Indeed, the increase of PI-PLCbeta1, along with Cyclin D3, has been detected in C2C12 mouse myoblasts induced to differentiate, as well as in human cells obtained from myotonic dystrophy. Also in the case of osteogenic differentiation there is a specific induction of PI-PLCbeta1, but in this case the role of PI-PLCbeta1 seems to be independent from Cyclin D3, so that a different mechanism could be involved. As for the hematopoietic system, PI-PLCbeta1 has a peculiar behavior: it increases during myeloid differentiation and decreases during erythroid differentiation, thus confirming the role of PI-PLCbeta1 as a modulator of hematopoiesis.
Collapse
Affiliation(s)
- Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| |
Collapse
|
31
|
Tang Y, Wang H, Wei B, Guo Y, Gu L, Yang Z, Zhang Q, Wu Y, Yuan Q, Zhao G, Ji G. CUG-BP1 regulates RyR1 ASI alternative splicing in skeletal muscle atrophy. Sci Rep 2015; 5:16083. [PMID: 26531141 PMCID: PMC4632035 DOI: 10.1038/srep16083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
RNA binding protein is identified as an important mediator of aberrant alternative splicing in muscle atrophy. The altered splicing of calcium channels, such as ryanodine receptors (RyRs), plays an important role in impaired excitation-contraction (E-C) coupling in muscle atrophy; however, the regulatory mechanisms of ryanodine receptor 1 (RyR1) alternative splicing leading to skeletal muscle atrophy remains to be investigated. In this study we demonstrated that CUG binding protein 1 (CUG-BP1) was up-regulated and the alternative splicing of RyR1 ASI (exon70) was aberrant during the process of neurogenic muscle atrophy both in human patients and mouse models. The gain and loss of function experiments in vivo demonstrated that altered splicing pattern of RyR1 ASI was directly mediated by an up-regulated CUG-BP1 function. Furthermore, we found that CUG-BP1 affected the calcium release activity in single myofibers and the extent of atrophy was significantly reduced upon gene silencing of CUG-BP1 in atrophic muscle. These findings improve our understanding of calcium signaling related biological function of CUG-BP1 in muscle atrophy. Thus, we provide an intriguing perspective of involvement of mis-regulated RyR1 splicing in muscular disease.
Collapse
Affiliation(s)
- Yinglong Tang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huiwen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Yuting Guo
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Gu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yanyun Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
32
|
Hypogonadism Associated with Cyp19a1 (Aromatase) Posttranscriptional Upregulation in Celf1 Knockout Mice. Mol Cell Biol 2015; 35:3244-53. [PMID: 26169831 DOI: 10.1128/mcb.00074-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/06/2015] [Indexed: 12/19/2022] Open
Abstract
CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of the Celf1 gene in mice causes male infertility due to impaired spermiogenesis, the postmeiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone in Celf1-null mice. We investigated the effect of Celf1 disruption on the expression levels of steroidogenic enzyme genes, and we observed that Cyp19a1 was upregulated. Cyp19a1 encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds to Cyp19a1 mRNA, and reporter assays supported the conclusion that CELF1 directly represses Cyp19a1 translation. We conclude that CELF1 downregulates Cyp19a1 (Aromatase) posttranscriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.
Collapse
|
33
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
34
|
|
35
|
Peng X, Shen X, Chen X, Liang R, Azares AR, Liu Y. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1490-7. [PMID: 25887157 DOI: 10.1016/j.bbadis.2015.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/14/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Myotonic dystrophy is a neuromuscular disease of RNA toxicity. The disease gene DMPK harbors expanded CTG trinucleotide repeats on its 3'-UTR. The transcripts of this mutant DMPK led to misregulation of RNA-binding proteins including MBNL1 and Celf1. In myoblasts, CUG-expansion impaired terminal differentiation. In this study, we formally tested how the abundance of Celf1 regulates normal myocyte differentiation, and how Celf1 expression level mediates CUG-expansion RNA toxicity-triggered impairment of myocyte differentiation. As the results, overexpression of Celf1 largely recapitulated the defects of myocytes with CUG-expansion, by increasing myocyte cycling. Knockdown of endogenous Celf1 level led to precocious myotube formation, supporting a negative connection between Celf1 abundance and myocyte terminal differentiation. Finally, knockdown of Celf1 in myocyte with CUG-expansion led to partial rescue, by promoting cell cycle exit. Our results suggest that Celf1 plays a distinctive and negative role in terminal myocyte differentiation, which partially contribute to DM1 RNA toxicity. Targeting Celf1 may be a valid strategy in correcting DM1 muscle phenotypes, especially for congenital cases.
Collapse
Affiliation(s)
- Xiaoping Peng
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Xiaopeng Shen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Xuanying Chen
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rui Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alon R Azares
- Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
36
|
CUGBP1 promotes cell proliferation and suppresses apoptosis via down-regulating C/EBPα in human non-small cell lung cancers. Med Oncol 2015; 32:82. [DOI: 10.1007/s12032-015-0544-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/13/2015] [Indexed: 12/13/2022]
|
37
|
Gao C, Yu Z, Liu S, Xin H, Li X. Overexpression of CUGBP1 is associated with the progression of non-small cell lung cancer. Tumour Biol 2015; 36:4583-9. [PMID: 25619475 DOI: 10.1007/s13277-015-3103-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/06/2023] Open
Abstract
The multifunctional RNA-binding protein CUGBP1 regulates multiple aspects of nuclear and cytoplasmic messenger RNA (mRNA) processing, including splicing, stabilization, and translation of mRNAs. Previous studies have shown that CUGBP1 is overexpressed in non-small-cell lung cancer (NSCLC) tissues, but the pathological functions of CUGBP1 in tumorigenesis and development are unknown. Here, we provide the first evidence demonstrating the clinicopathological significance of CUGBP1 in NSCLC. Using immunohistochemistry, the levels of CUGBP1 expression in NSCLC tissues and adjacent non-cancerous tissues were examined and determined to be associated with differentiation. Short hairpin RNA-induced downregulation of CUGBP1 promoted apoptosis and decreased proliferation in the A549 NSCLC cell line. Moreover, Western blot analysis indicated that the depletion of CUGBP1 increased the protein levels of cyclin D1, BAD, BAX, Jun D, and E-cadherin, while the cyclin B1 level decreased. Knockdown of CUGBP1 decreased β-catenin and vimentin levels and increased E-cadherin expression, suggesting that CUGBP1 may contribute significantly to epithelial to mesenchymal transition (EMT) progression. These results demonstrate the importance of CUGBP1 in the biological and pathological functions of NSCLC and indicate its potential as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Caihong Gao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Chau A, Kalsotra A. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn 2015; 244:377-90. [PMID: 25504326 DOI: 10.1002/dvdy.24240] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involves many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Department of Medical Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois
| | | |
Collapse
|
39
|
Ohsawa N, Koebis M, Mitsuhashi H, Nishino I, Ishiura S. ABLIM1 splicing is abnormal in skeletal muscle of patients with DM1 and regulated by MBNL, CELF and PTBP1. Genes Cells 2014; 20:121-34. [PMID: 25403273 DOI: 10.1111/gtc.12201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-mediated disorder characterized by muscle weakness, cardiac defects and multiple symptoms and is caused by expanded CTG repeats within the 3' untranslated region of the DMPK gene. In this study, we found abnormal splicing of actin-binding LIM protein 1 (ABLIM1) in skeletal muscles of patients with DM1 and a DM1 mouse model (HSA(LR) ). An exon 11 inclusion isoform is expressed in skeletal muscle and heart of non-DM1 individuals, but not in skeletal muscle of patients with DM1 or other adult human tissues. Moreover, we determined that ABLIM1 splicing is regulated by several splice factors, including MBNL family proteins, CELF1, 2 and 6, and PTBP1, using a cellular splicing assay. MBNL proteins promoted the inclusion of ABLIM1 exon 11, but other proteins and expanded CUG repeats repressed exon 11 of ABLIM1. This result is consistent with the hypothesis that MBNL proteins are trapped by expanded CUG repeats and inactivated in DM1 and that CELF1 is activated in DM1. However, activation of PTBP1 has not been reported in DM1. Our results suggest that the exon 11 inclusion isoform of ABLIM1 may have a muscle-specific function, and its abnormal splicing could be related to muscle symptoms of DM1.
Collapse
Affiliation(s)
- Natsumi Ohsawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | | | | | |
Collapse
|
40
|
De Luca G, Ferretti R, Bruschi M, Mezzaroma E, Caruso M. Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells. Stem Cells 2014; 31:2478-91. [PMID: 23897741 PMCID: PMC3963451 DOI: 10.1002/stem.1487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/26/2013] [Accepted: 06/21/2013] [Indexed: 12/28/2022]
Abstract
Satellite cells are mitotically quiescent myogenic stem cells resident beneath the basal lamina surrounding adult muscle myofibers. In response to injury, multiple extrinsic signals drive the entry of satellite cells into the cell cycle and then to proliferation, differentiation, and self-renewal of their downstream progeny. Because satellite cells must endure for a lifetime, their cell cycle activity must be carefully controlled to coordinate proliferative expansion and self-renewal with the onset of the differentiation program. In this study, we find that cyclin D3, a member of the family of mitogen-activated D-type cyclins, is critically required for proper developmental progression of myogenic progenitors. Using a cyclin D3-knockout mouse we determined that cyclin D3 deficiency leads to reduced myofiber size and impaired establishment of the satellite cell population within the adult muscle. Cyclin D3-null myogenic progenitors, studied ex vivo on isolated myofibers and in vitro, displayed impaired cell cycle progression, increased differentiation potential, and reduced self-renewal capability. Similarly, silencing of cyclin D3 in C2 myoblasts caused anticipated exit from the cell cycle and precocious onset of terminal differentiation. After induced muscle damage, cyclin D3-null myogenic progenitors exhibited proliferation deficits, a precocious ability to form newly generated myofibers and a reduced capability to repopulate the satellite cell niche at later stages of the regeneration process. These results indicate that cyclin D3 plays a cell-autonomous and nonredundant function in regulating the dynamic balance between proliferation, differentiation, and self-renewal that normally establishes an appropriate pool size of adult satellite cells.
Collapse
Affiliation(s)
- Giulia De Luca
- National Research Council, Institute of Cell Biology and Neurobiology, Fondazione Santa Lucia, Roma, Italy
| | | | | | | | | |
Collapse
|
41
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
42
|
Wojciechowska M, Taylor K, Sobczak K, Napierala M, Krzyzosiak WJ. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1. RNA Biol 2014; 11:742-54. [PMID: 24824895 PMCID: PMC4156505 DOI: 10.4161/rna.28799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Expandable (CTG)n repeats in the 3′ UTR of the DMPK gene are a cause of myotonic dystrophy type 1 (DM1), which leads to a toxic RNA gain-of-function disease. Mutant RNAs with expanded CUG repeats are retained in the nucleus and aggregate in discrete inclusions. These foci sequester splicing factors of the MBNL family and trigger upregulation of the CUGBP family of proteins resulting in the mis-splicing of their target transcripts. To date, many efforts to develop novel therapeutic strategies have been focused on disrupting the toxic nuclear foci and correcting aberrant alternative splicing via targeting mutant CUG repeats RNA; however, no effective treatment for DM1 is currently available. Herein, we present results of culturing of human DM1 myoblasts and fibroblasts with two small-molecule ATP-binding site-specific kinase inhibitors, C16 and C51, which resulted in the alleviation of the dominant-negative effects of CUG repeat expansion. Reversal of the DM1 molecular phenotype includes a reduction of the size and number of foci containing expanded CUG repeat transcripts, decreased steady-state levels of CUGBP1 protein, and consequent improvement of the aberrant alternative splicing of several pre-mRNAs misregulated in DM1.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Noskowskiego; Poznan, Poland
| | - Katarzyna Taylor
- Department of Gene Expression; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Umultowska 89; Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Umultowska 89; Poznan, Poland
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics and UAB Stem Cell Institute; University of Alabama at Birmingham; Birmingham, AL USA
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Noskowskiego; Poznan, Poland
| |
Collapse
|
43
|
Giudice J, Cooper TA. RNA-binding proteins in heart development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:389-429. [PMID: 25201112 DOI: 10.1007/978-1-4939-1221-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) are key players of posttranscriptional regulation occurring during normal tissue development. All tissues examined thus far have revealed the importance of RBPs in the regulation of complex networks involved in organ morphogenesis, maturation, and function. They are responsible for controlling tissue-specific gene expression by regulating alternative splicing, mRNA stability, translation, and poly-adenylation. The heart is the first organ form during embryonic development and is also the first to acquire functionality. Numerous remodeling processes take place during late cardiac development since fetal heart first adapts to birth and then undergoes a transition to adult functionality. This physiological remodeling involves transcriptional and posttranscriptional networks that are regulated by RBPs. Disruption of the normal regulatory networks has been shown to cause cardiomyopathy in humans and animal models. Here we review the complexity of late heart development and the current information regarding how RBPs control aspects of postnatal heart development. We also review how activities of RBPs are modulated adding complexity to the regulation of developmental networks.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | |
Collapse
|
44
|
Cardani R, Bugiardini E, Renna LV, Rossi G, Colombo G, Valaperta R, Novelli G, Botta A, Meola G. Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2. PLoS One 2013; 8:e83777. [PMID: 24376746 PMCID: PMC3869793 DOI: 10.1371/journal.pone.0083777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are progressive multisystemic disorders caused by similar mutations at two different genetic loci. The common key feature of DM pathogenesis is nuclear accumulation of mutant RNA which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of two RNA binding proteins, MBNL1 and CUGBP1. However, DM1 and DM2 show disease-specific features that make them clearly separate diseases suggesting that other cellular and molecular pathways may be involved. In this study we have analysed the histopathological, and biomolecular features of skeletal muscle biopsies from DM1 and DM2 patients in relation to presenting phenotypes to better define the molecular pathogenesis. Particularly, the expression of CUGBP1 protein has been examined to clarify if this factor may act as modifier of disease-specific manifestations in DM. The results indicate that the splicing and muscle pathological alterations observed are related to the clinical phenotype both in DM1 and in DM2 and that CUGBP1 seems to play a role in classic DM1 but not in DM2. In conclusion, our results indicate that multisystemic disease spectrum of DM pathologies may not be explained only by spliceopathy thus confirming that the molecular pathomechanism of DM is more complex than that actually suggested.
Collapse
Affiliation(s)
- Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Enrico Bugiardini
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura V. Renna
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulia Rossi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | | | - Rea Valaperta
- Research Laboratories - Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
- * E-mail:
| |
Collapse
|
45
|
Follo MY, Faenza I, Piazzi M, Blalock WL, Manzoli L, McCubrey JA, Cocco L. Nuclear PI-PLCβ1: an appraisal on targets and pathology. Adv Biol Regul 2013; 54:2-11. [PMID: 24296032 DOI: 10.1016/j.jbior.2013.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022]
Abstract
Lipid signalling molecules are essential components of the processes that allow one extracellular signal to be transferred inside the nucleus, where specific lipid second messengers elicit reactions capable of regulating gene transcription, DNA replication or repair and DNA cleavage, eventually resulting in cell growth, differentiation, apoptosis or many other cell functions. Nuclear inositides are independently regulated, suggesting that the nucleus constitutes a functionally distinct compartment of inositol lipids metabolism. Indeed, nuclear inositol lipids themselves can modulate nuclear processes, such as transcription and pre-mRNA splicing, growth, proliferation, cell cycle regulation and differentiation. Nuclear PI-PLCβ1 is a key molecule for nuclear inositide signalling, where it plays a role in cell cycle progression, proliferation and differentiation. Here we review the targets and possible involvement of nuclear PI-PLCβ1 in human physiology and pathology.
Collapse
Affiliation(s)
- Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Manuela Piazzi
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - William L Blalock
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare and SC Laboratorio di Biologia Cellulare Muscoloscheletrica, IOR, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
46
|
Faenza I, Fiume R, Piazzi M, Colantoni A, Cocco L. Nuclear inositide specific phospholipase C signalling - interactions and activity. FEBS J 2013; 280:6311-21. [PMID: 23890371 DOI: 10.1111/febs.12450] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/26/2013] [Accepted: 07/18/2013] [Indexed: 01/07/2023]
Abstract
Evidence accumulated over the past 20 years has highlighted the presence of an autonomous nuclear inositol lipid metabolism, and suggests that lipid signalling molecules are important components of signalling pathways operating within the nucleus. Nuclear polyphosphoinositide (PI) signalling relies on the synthesis and metabolism of phosphatidylinositol 4,5-bisphosphate, which can modulate the activity of effector proteins and is a substrate of signalling enzymes. The regulation of the nuclear PI pool is totally independent from the plasma membrane counterpart, suggesting that the nucleus constitutes a functionally distinct compartment of inositol lipids metabolism. Among the nuclear enzymes involved in PI metabolism, inositide specific phospholipase C (PI-PLC) has been one of the most extensively studied. Several isoforms of PI-PLCs have been identified in the nucleus, namely PI-PLC-β1, γ1, δ1 and ζ; however, the β1 isozyme is the best characterized. In the present review, we focus on the signal transduction-related metabolism of nuclear PI-PLC and review the most convincing evidence for PI-PLC expression and activity being involved in differentiation and proliferation programmes in several cell systems. Moreover, nuclear PI-PLC is an intermediate effector and interactor for nuclear inositide signalling. The inositide cycle exists and shows a biological role inside the nucleus. It is an autonomous lipid-dependent signalling system, independently regulated with respect to the one at the plasma membrane counterpart, and is involved in cell cycle progression and differentiation.
Collapse
Affiliation(s)
- Irene Faenza
- Cell Signaling Laboratory, Department of Biomedical Science (DIBINEM), University of Bologna, Italy
| | | | | | | | | |
Collapse
|
47
|
Michalova E, Vojtesek B, Hrstka R. Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders. Int J Mol Sci 2013; 14:15681-94. [PMID: 23896598 PMCID: PMC3759880 DOI: 10.3390/ijms140815681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022] Open
Abstract
The biological fate of each mRNA and consequently, the protein to be synthesised, is highly dependent on the nature of the 3' untranslated region. Despite its non-coding character, the 3' UTR may affect the final mRNA stability, the localisation, the export from the nucleus and the translation efficiency. The conserved regulatory sequences within 3' UTRs and the specific elements binding to them enable gene expression control at the posttranscriptional level and all these processes reflect the actual state of the cell including proliferation, differentiation, cellular stress or tumourigenesis. Through this article, we briefly outline how the alterations in the establishment and final architecture of 3' UTRs may contribute to the development of various disorders in humans.
Collapse
Affiliation(s)
- Eva Michalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic; E-Mails: (E.M.); (B.V.)
| |
Collapse
|
48
|
Molecular mechanisms of muscle atrophy in myotonic dystrophies. Int J Biochem Cell Biol 2013; 45:2280-7. [PMID: 23796888 DOI: 10.1016/j.biocel.2013.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 02/01/2023]
Abstract
Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are multisystemic diseases that primarily affect skeletal muscle, causing myotonia, muscle atrophy, and muscle weakness. DM1 and DM2 pathologies are caused by expansion of CTG and CCTG repeats in non-coding regions of the genes encoding myotonic dystrophy protein kinase (DMPK) and zinc finger protein 9 (ZNF9) respectively. These expansions cause DM pathologies through accumulation of mutant RNAs that alter RNA metabolism in patients' tissues by targeting RNA-binding proteins such as CUG-binding protein 1 (CUGBP1) and Muscle blind-like protein 1 (MBNL1). Despite overwhelming evidence showing the critical role of RNA-binding proteins in DM1 and DM2 pathologies, the downstream pathways by which these RNA-binding proteins cause muscle wasting and muscle weakness are not well understood. This review discusses the molecular pathways by which DM1 and DM2 mutations might cause muscle atrophy and describes progress toward the development of therapeutic interventions for muscle wasting and weakness in DM1 and DM2. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
|
49
|
Edwards JM, Long J, de Moor CH, Emsley J, Searle MS. Structural insights into the targeting of mRNA GU-rich elements by the three RRMs of CELF1. Nucleic Acids Res 2013; 41:7153-66. [PMID: 23748565 PMCID: PMC3737555 DOI: 10.1093/nar/gkt470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CUG-BP, Elav-like family (CELF) of RNA-binding proteins control gene expression at a number of different levels by regulating pre-mRNA splicing, deadenylation and mRNA stability. We present structural insights into the binding selectivity of CELF member 1 (CELF1) for GU-rich mRNA target sequences of the general form 5'-UGUNxUGUNyUGU and identify a high affinity interaction (Kd ∼ 100 nM for x = 2 and y = 4) with simultaneous binding of all three RNA recognition motifs within a single 15-nt binding element. RNA substrates spin-labelled at either the 3' or 5' terminus result in differential nuclear magnetic resonance paramagnetic relaxation enhancement effects, which are consistent with a non-sequential 2-1-3 arrangement of the three RNA recognition motifs on UGU sites in a 5' to 3' orientation along the RNA target. We further demonstrate that CELF1 binds to dispersed single-stranded UGU sites at the base of an RNA hairpin providing a structural rationale for recognition of CUG expansion repeats and splice site junctions in the regulation of alternative splicing.
Collapse
Affiliation(s)
- John M Edwards
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
50
|
de Haro M, Al-Ramahi I, Jones KR, Holth JK, Timchenko LT, Botas J. Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy. PLoS Genet 2013; 9:e1003445. [PMID: 23637619 PMCID: PMC3630084 DOI: 10.1371/journal.pgen.1003445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
We report the identification and characterization of a previously unknown suppressor of myopathy caused by expansion of CUG repeats, the mutation that triggers Myotonic Dystrophy Type 1 (DM1). We screened a collection of genes encoding RNA-binding proteins as candidates to modify DM1 pathogenesis using a well established Drosophila model of the disease. The screen revealed smaug as a powerful modulator of CUG-induced toxicity. Increasing smaug levels prevents muscle wasting and restores muscle function, while reducing its function exacerbates CUG-induced phenotypes. Using human myoblasts, we show physical interactions between human Smaug (SMAUG1/SMAD4A) and CUGBP1. Increased levels of SMAUG1 correct the abnormally high nuclear accumulation of CUGBP1 in myoblasts from DM1 patients. In addition, augmenting SMAUG1 levels leads to a reduction of inactive CUGBP1-eIF2α translational complexes and to a correction of translation of MRG15, a downstream target of CUGBP1. Therefore, Smaug suppresses CUG-mediated muscle wasting at least in part via restoration of translational activity of CUGBP1.
Collapse
Affiliation(s)
- Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Karlie R. Jones
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jerrah K. Holth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lubov T. Timchenko
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|