1
|
Kohlmeyer JL, Kaemmer CA, Lingo JJ, Voigt E, Leidinger MR, McGivney GR, Scherer A, Koppenhafer SL, Gordon DJ, Breheny P, Meyerholz DK, Tanas MR, Dodd RD, Quelle DE. Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neurooncol Adv 2022; 4:vdac047. [PMID: 35571990 PMCID: PMC9092646 DOI: 10.1093/noajnl/vdac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with complex molecular and genetic alterations. Powerful tumor suppressors CDKN2A and TP53 are commonly disrupted along with NF1, a gene that encodes a negative regulator of Ras. Many additional factors have been implicated in MPNST pathogenesis. A greater understanding of critical drivers of MPNSTs is needed to guide more informed targeted therapies for patients. RABL6A is a newly identified driver of MPNST cell survival and proliferation whose in vivo role in the disease is unknown. Methods Using CRISPR-Cas9 targeting of Nf1 + Cdkn2a or Nf1 + Tp53 in the mouse sciatic nerve to form de novo MPNSTs, we investigated the biological significance of RABL6A in MPNST development. Terminal tumors were evaluated by western blot, qRT-PCR, and immunohistochemistry. Results Mice lacking Rabl6 displayed slower tumor progression and extended survival relative to wildtype animals in both genetic contexts. YAP oncogenic activity was selectively downregulated in Rabl6-null, Nf1 + Cdkn2a lesions whereas loss of RABL6A caused upregulation of the CDK inhibitor, p27, in all tumors. Paradoxically, both models displayed elevated Myc protein and Ki67 staining in terminal tumors lacking RABL6A. In Nf1 + p53 tumors, cellular atypia and polyploidy were evident and increased by RABL6A loss. Conclusions These findings demonstrate that RABL6A is required for optimal progression of NF1 mutant MPNSTs in vivo in both Cdkn2a and p53 inactivated settings. However, sustained RABL6A loss may provide selective pressure for unwanted alterations, including increased Myc, cellular atypia, and polyploidy, that ultimately promote a hyper-proliferative tumor phenotype akin to drug-resistant lesions.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
| | - Courtney A Kaemmer
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
| | - Joshua J Lingo
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Mariah R Leidinger
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
| | - Gavin R McGivney
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
| | - Amanda Scherer
- The Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David J Gordon
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick Breheny
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - David K Meyerholz
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
| | - Munir R Tanas
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Hassan M, Butler E, Wilson R, Roy A, Zheng Y, Liem P, Rakheja D, Pavlick D, Young LL, Rosenzweig M, Erlich R, Ali SM, Leavey PJ, Parsons DW, Skapek SX, Laetsch TW. Novel PDGFRB rearrangement in multifocal infantile myofibromatosis is tumorigenic and sensitive to imatinib. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004440. [PMID: 31645346 PMCID: PMC6824247 DOI: 10.1101/mcs.a004440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Infantile myofibromatosis (IM) is an aggressive neoplasm composed of myofibroblast-like cells in children. Although typically localized, it can also present as multifocal disease, which represents a challenge for effective treatment. IM has previously been linked to activating somatic and germline point mutations in the PDGFRβ tyrosine kinase encoded by the PDGFRB gene. Clinical panel-based targeted tumor sequencing of a tumor from a newborn with multifocal IM revealed a novel PDGFRB rearrangement, which was reported as being of unclear significance. Additional sequencing of cDNA from tumor and germline DNA confirmed a complex somatic/mosaic PDGFRB rearrangement with an apparent partial tandem duplication disrupting the juxtamembrane domain. Ectopic expression of cDNA encoding the mutant form of PDGFRB markedly enhanced cell proliferation of mouse embryo fibroblasts (MEFs) compared to wild-type PDGFRB and conferred tumor-forming capacity on nontumorigenic 10T1/2 fibroblasts. The mutated protein enhanced MAPK activation and retained sensitivity to the PDGFRβ inhibitor imatinib. Our findings reveal a new mechanism by which PDGFRB can be activated in IM, suggest that therapy with tyrosine kinase inhibitors including imatinib may be beneficial, and raise the possibility that this receptor tyrosine kinase might be altered in a similar fashion in additional cases that would similarly present annotation challenges in clinical DNA sequencing analysis pipelines.
Collapse
Affiliation(s)
- Mohammed Hassan
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Erin Butler
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75235, USA
| | - Raphael Wilson
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Angshumoy Roy
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanbin Zheng
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Priscilla Liem
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dean Pavlick
- Foundation Medicine, Inc, Cambridge, Massachusetts 02141, USA
| | - Lauren L Young
- Foundation Medicine, Inc, Cambridge, Massachusetts 02141, USA.,Beam Therapeutics, Cambridge, Massachusetts 02139, USA
| | - Mark Rosenzweig
- Foundation Medicine, Inc, Cambridge, Massachusetts 02141, USA
| | - Rachel Erlich
- Foundation Medicine, Inc, Cambridge, Massachusetts 02141, USA
| | - Siraj M Ali
- Foundation Medicine, Inc, Cambridge, Massachusetts 02141, USA
| | - Patrick J Leavey
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75235, USA
| | | | - Stephen X Skapek
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75235, USA
| | - Theodore W Laetsch
- Division of Hematology/Oncology, Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75235, USA
| |
Collapse
|
3
|
Umesalma S, Kaemmer CA, Kohlmeyer JL, Letney B, Schab AM, Reilly JA, Sheehy RM, Hagen J, Tiwari N, Zhan F, Leidinger MR, O'Dorisio TM, Dillon J, Merrill RA, Meyerholz DK, Perl AL, Brown BJ, Braun TA, Scott AT, Ginader T, Taghiyev AF, Zamba GK, Howe JR, Strack S, Bellizzi AM, Narla G, Darbro BW, Quelle FW, Quelle DE. RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. J Clin Invest 2019; 129:1641-1653. [PMID: 30721156 DOI: 10.1172/jci123049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan M Sheehy
- Department of Pharmacology.,Free Radical & Radiation Biology Training Program
| | | | | | | | - Mariah R Leidinger
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - David K Meyerholz
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Abbey L Perl
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | - Agshin F Taghiyev
- Pediatrics, Colleges of Medicine, Engineering, or Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Andrew M Bellizzi
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin W Darbro
- Pediatrics, Colleges of Medicine, Engineering, or Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | - Dawn E Quelle
- Department of Pharmacology.,Molecular Medicine Graduate Program.,Free Radical & Radiation Biology Training Program.,Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Fontana R, Ranieri M, La Mantia G, Vivo M. Dual Role of the Alternative Reading Frame ARF Protein in Cancer. Biomolecules 2019; 9:E87. [PMID: 30836703 PMCID: PMC6468759 DOI: 10.3390/biom9030087] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no sequence identity. Initial data obtained in mice showed that both proteins are potent tumor suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas, sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans, the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific mutations of p14ARF have been described in different types of human cancers such as colorectal and gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been shown to rely on both p53-dependent and independent functions. However, novel data collected in the last years has challenged the traditional and established role of this protein as a tumor suppressor. In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in humans are associated with a poor prognosis. In this review, the recent evidence and the molecular mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and physiological contexts.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Girolama La Mantia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
5
|
PKC Dependent p14ARF Phosphorylation on Threonine 8 Drives Cell Proliferation. Sci Rep 2018; 8:7056. [PMID: 29728595 PMCID: PMC5935756 DOI: 10.1038/s41598-018-25496-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 01/11/2023] Open
Abstract
ARF role as tumor suppressor has been challenged in the last years by several findings of different groups ultimately showing that its functions can be strictly context dependent. We previously showed that ARF loss in HeLa cells induces spreading defects, evident as rounded morphology of depleted cells, accompanied by a decrease of phosphorylated Focal Adhesion Kinase (FAK) protein levels and anoikis. These data, together with previous finding that a PKC dependent signalling pathway can lead to ARF stabilization, led us to the hypothesis that ARF functions in cell proliferation might be regulated by phosphorylation. In line with this, we show here that upon spreading ARF is induced through PKC activation. A constitutive-phosphorylated ARF mutant on the conserved threonine 8 (T8D) is able to mediate both cell spreading and FAK activation. Finally, ARF-T8D expression confers growth advantage to cells thus leading to the intriguing hypothesis that ARF phosphorylation could be a mechanism through which pro-proliferative or anti proliferative signals could be transduced inside the cells in both physiological and pathological conditions.
Collapse
|
6
|
The evolution of Sex-linked barring alleles in chickens involves both regulatory and coding changes in CDKN2A. PLoS Genet 2017; 13:e1006665. [PMID: 28388616 PMCID: PMC5384658 DOI: 10.1371/journal.pgen.1006665] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/01/2017] [Indexed: 02/03/2023] Open
Abstract
Sex-linked barring is a fascinating plumage pattern in chickens recently shown to be associated with two non-coding and two missense mutations affecting the ARF transcript at the CDKN2A tumor suppressor locus. It however remained a mystery whether all four mutations are indeed causative and how they contribute to the barring phenotype. Here, we show that Sex-linked barring is genetically heterogeneous, and that the mutations form three functionally different variant alleles. The B0 allele carries only the two non-coding changes and is associated with the most dilute barring pattern, whereas the B1 and B2 alleles carry both the two non-coding changes and one each of the two missense mutations causing the Sex-linked barring and Sex-linked dilution phenotypes, respectively. The data are consistent with evolution of alleles where the non-coding changes occurred first followed by the two missense mutations that resulted in a phenotype more appealing to humans. We show that one or both of the non-coding changes are cis-regulatory mutations causing a higher CDKN2A expression, whereas the missense mutations reduce the ability of ARF to interact with MDM2. Caspase assays for all genotypes revealed no apoptotic events and our results are consistent with a recent study indicating that the loss of melanocyte progenitors in Sex-linked barring in chicken is caused by premature differentiation and not apoptosis. Our results show that CDKN2A is a major locus driving the differentiation of avian melanocytes in a temporal and spatial manner.
Collapse
|
7
|
TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol 2015; 35:2851-63. [PMID: 26055329 DOI: 10.1128/mcb.01064-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/03/2015] [Indexed: 01/04/2023] Open
Abstract
The tumor suppressor ARF enhances the SUMOylation of target proteins; however, the physiological function of ARF-mediated SUMOylation has been unclear due to the lack of a known, associated E3 SUMO ligase. Here we uncover TRIM28/KAP1 as a novel ARF-binding protein and SUMO E3 ligase for NPM1/B23. ARF and TRIM28 cooperate to SUMOylate NPM1, a nucleolar protein that regulates centrosome duplication and genomic stability. ARF-mediated SUMOylation of NPM1 was attenuated by TRIM28 depletion and enhanced by TRIM28 overexpression. Coexpression of ARF and TRIM28 promoted NPM1 centrosomal localization by enhancing its SUMOylation and suppressed centrosome amplification; these functions required the E3 ligase activity of TRIM28. Conversely, depletion of ARF or TRIM28 increased centrosome amplification. ARF also counteracted oncogenic Ras-induced centrosome amplification. Centrosome amplification is often induced by oncogenic insults, leading to genomic instability. However, the mechanisms employed by tumor suppressors to protect the genome are poorly understood. Our findings suggest a novel role for ARF in maintaining genome integrity by facilitating TRIM28-mediated SUMOylation of NPM1, thus preventing centrosome amplification.
Collapse
|
8
|
Hagen J, Muniz VP, Falls KC, Reed SM, Taghiyev AF, Quelle FW, Gourronc FA, Klingelhutz AJ, Major HJ, Askeland RW, Sherman SK, O'Dorisio TM, Bellizzi AM, Howe JR, Darbro BW, Quelle DE. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner. Cancer Res 2014; 74:6661-70. [PMID: 25273089 DOI: 10.1158/0008-5472.can-13-3742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood, and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs (PNET) that correlated with high-level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor-suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating that RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A-knockdown cells, although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients.
Collapse
Affiliation(s)
- Jussara Hagen
- Department of Pharmacology, University of Iowa, Iowa City, Iowa
| | - Viviane P Muniz
- Department of Pharmacology, University of Iowa, Iowa City, Iowa. Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Kelly C Falls
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Sara M Reed
- Department of Pharmacology, University of Iowa, Iowa City, Iowa. Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Agshin F Taghiyev
- Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, University of Iowa, Iowa City, Iowa. The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Francoise A Gourronc
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Aloysius J Klingelhutz
- Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, Iowa. The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Heather J Major
- Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ryan W Askeland
- Department of Pathology, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Scott K Sherman
- Department of Surgery, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Thomas M O'Dorisio
- The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew M Bellizzi
- The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Pathology, College of Medicine, University of Iowa, Iowa City, Iowa
| | - James R Howe
- The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Surgery, College of Medicine, University of Iowa, Iowa City, Iowa
| | - Benjamin W Darbro
- Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa. The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Dawn E Quelle
- Department of Pharmacology, University of Iowa, Iowa City, Iowa. Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, Iowa. Medical Scientist Training Program, University of Iowa, Iowa City, Iowa. The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Pathology, College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
9
|
Britigan EMC, Wan J, Zasadil LM, Ryan SD, Weaver BA. The ARF tumor suppressor prevents chromosomal instability and ensures mitotic checkpoint fidelity through regulation of Aurora B. Mol Biol Cell 2014; 25:2761-73. [PMID: 25057018 PMCID: PMC4161511 DOI: 10.1091/mbc.e14-05-0966] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ARF tumor suppressor is best known for its role in stabilizing p53. This study identifies p53-independent functions of ARF in chromosome segregation and the mitotic checkpoint. Mitotic defects caused by loss of ARF are recapitulated by Aurora B overexpression and rescued by partial depletion of Aurora B. The ARF tumor suppressor is part of the CDKN2A locus and is mutated or undetectable in numerous cancers. The best-characterized role for ARF is in stabilizing p53 in response to cellular stress. However, ARF has tumor suppressive functions outside this pathway that have not been fully defined. Primary mouse embryonic fibroblasts (MEFs) lacking the ARF tumor suppressor contain abnormal numbers of chromosomes. However, no role for ARF in cell division has previously been proposed. Here we demonstrate a novel, p53-independent role for ARF in the mitotic checkpoint. Consistent with this, loss of ARF results in aneuploidy in vitro and in vivo. ARF−/− MEFs exhibit mitotic defects including misaligned and lagging chromosomes, multipolar spindles, and increased tetraploidy. ARF−/− cells exhibit overexpression of Mad2, BubR1, and Aurora B, but only overexpression of Aurora B phenocopies mitotic defects observed in ARF−/− MEFs. Restoring Aurora B to near-normal levels rescues mitotic phenotypes in cells lacking ARF. Our results define an unexpected role for ARF in chromosome segregation and mitotic checkpoint function. They further establish maintenance of chromosomal stability as one of the additional tumor-suppressive functions of ARF and offer a molecular explanation for the common up-regulation of Aurora B in human cancers.
Collapse
Affiliation(s)
- Eric M C Britigan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI 53705
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Physiology Training Program, University of Wisconsin, Madison, WI 53705
| | - Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI 53705
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 Carbone Cancer Center, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
10
|
Zhang X, Hagen J, Muniz VP, Smith T, Coombs GS, Eischen CM, Mackie DI, Roman DL, Van Rheeden R, Darbro B, Tompkins VS, Quelle DE. RABL6A, a novel RAB-like protein, controls centrosome amplification and chromosome instability in primary fibroblasts. PLoS One 2013; 8:e80228. [PMID: 24282525 PMCID: PMC3839920 DOI: 10.1371/journal.pone.0080228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022] Open
Abstract
RABL6A (RAB-like 6 isoform A) is a novel protein that was originally identified based on its association with the Alternative Reading Frame (ARF) tumor suppressor. ARF acts through multiple p53-dependent and p53-independent pathways to prevent cancer. How RABL6A functions, to what extent it depends on ARF and p53 activity, and its importance in normal cell biology are entirely unknown. We examined the biological consequences of RABL6A silencing in primary mouse embryo fibroblasts (MEFs) that express or lack ARF, p53 or both proteins. We found that RABL6A depletion caused centrosome amplification, aneuploidy and multinucleation in MEFs regardless of ARF and p53 status. The centrosome amplification in RABL6A depleted p53−/− MEFs resulted from centrosome reduplication via Cdk2-mediated hyperphosphorylation of nucleophosmin (NPM) at threonine-199. Thus, RABL6A prevents centrosome amplification through an ARF/p53-independent mechanism that restricts NPM-T199 phosphorylation. These findings demonstrate an essential role for RABL6A in centrosome regulation and maintenance of chromosome stability in non-transformed cells, key processes that ensure genomic integrity and prevent tumorigenesis.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jussara Hagen
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Viviane P. Muniz
- The Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Tarik Smith
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gary S. Coombs
- Department of Biology, Waldorf College, Forest City, Iowa, United States of America
| | - Christine M. Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Duncan I. Mackie
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - David L. Roman
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Richard Van Rheeden
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin Darbro
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Van S. Tompkins
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- The Molecular and Cellular Biology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
11
|
Budina-Kolomets A, Hontz RD, Pimkina J, Murphy ME. A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy 2013; 9:1553-65. [PMID: 23939042 PMCID: PMC4623555 DOI: 10.4161/auto.25831] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/25/2023] Open
Abstract
The ARF tumor suppressor, encoded by the CDKN2A gene, has a well-defined role regulating TP53 stability; this activity maps to exon 1β of CDKN2A. In contrast, little is known about the function(s) of exon 2 of ARF, which contains the majority of mutations in human cancer. In addition to controlling TP53 stability, ARF also has a role in the induction of autophagy. However, whether the principal molecule involved is full-length ARF, or a small molecular weight variant called smARF, has been controversial. Additionally, whether tumor-derived mutations in exon 2 of CDKN2A affect ARF's autophagy function is unknown. Finally, whereas it is known that silencing or inhibiting TP53 induces autophagy, the contribution of ARF to this induction is unknown. In this report we used multiple autophagy assays to map a region located in the highly conserved 5' end of exon 2 of CDKN2A that is necessary for autophagy induction by both human and murine ARF. We showed that mutations in exon 2 of CDKN2A that affect the coding potential of ARF, but not p16INK4a, all impair the ability of ARF to induce autophagy. We showed that whereas full-length ARF can induce autophagy, our combined data suggest that smARF instead induces mitophagy (selective autophagy of mitochondria), thus potentially resolving some confusion regarding the role of these variants. Finally, we showed that silencing Tp53 induces autophagy in an ARF-dependent manner. Our data indicated that a conserved domain in ARF mediates autophagy, and for the first time they implicate autophagy in ARF's tumor suppressor function.
Collapse
Affiliation(s)
- Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis; Wistar Institute; Philadelphia, PA USA
| | - Robert D Hontz
- Program in Molecular and Cellular Oncogenesis; Wistar Institute; Philadelphia, PA USA
| | - Julia Pimkina
- Program in Molecular and Cellular Oncogenesis; Wistar Institute; Philadelphia, PA USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis; Wistar Institute; Philadelphia, PA USA
| |
Collapse
|
12
|
Busch SE, Moser RD, Gurley KE, Kelly-Spratt KS, Liggitt HD, Kemp CJ. ARF inhibits the growth and malignant progression of non-small-cell lung carcinoma. Oncogene 2013; 33:2665-73. [PMID: 23752194 DOI: 10.1038/onc.2013.208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/30/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
Abstract
Non-small-cell lung carcinoma (NSCLC) is among the deadliest of human cancers. The CDKN2A locus, which houses the INK4a and ARF tumor suppressor genes, is frequently altered in NSCLC. However, the specific role of ARF in pulmonary tumorigenesis remains unclear. KRAS and other oncogenes induce the expression of ARF, thus stabilizing p53 activity and arresting cell proliferation. To address the role of ARF in Kras-driven NSCLC, we compared the susceptibility of NIH/Ola strain wild-type and Arf-knockout mice to urethane-induced lung carcinogenesis. Lung tumor size, malignancy and associated morbidity were significantly increased in Arf(-/-) compared with Arf(+/+) animals at 25 weeks after induction. Pulmonary tumors from Arf-knockout mice exhibited increased cell proliferation and DNA damage compared with wild-type mice. A subgroup of tumors in Arf(-/-) animals presented as dedifferentiated and metastatic, with many characteristics of pulmonary sarcomatoid carcinoma, a neoplasm previously undocumented in mouse models. Our finding of a role for ARF in NSCLC is consistent with the observation that benign adenomas from Arf(+/+) mice robustly expressed ARF, while ARF expression was markedly reduced in malignant adenocarcinomas. ARF expression also frequently colocalized with the expression of p21(CIP1), a transcriptional target of p53, arguing that ARF induces the p53 checkpoint to arrest cell proliferation in vivo. Taken together, these findings demonstrate that induction of ARF is an early response in lung tumorigenesis that mounts a strong barrier against tumor growth and malignant progression.
Collapse
Affiliation(s)
- S E Busch
- 1] Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - R D Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - K E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - K S Kelly-Spratt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - H D Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - C J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
13
|
Chen D, Kon N, Zhong J, Zhang P, Yu L, Gu W. Differential effects on ARF stability by normal versus oncogenic levels of c-Myc expression. Mol Cell 2013; 51:46-56. [PMID: 23747016 DOI: 10.1016/j.molcel.2013.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/18/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
ARF suppresses aberrant cell growth upon c-Myc overexpression by activating p53 responses. Nevertheless, the precise mechanism by which ARF specifically restrains the oncogenic potential of c-Myc without affecting its normal physiological function is not well understood. Here, we show that low levels of c-Myc expression stimulate cell proliferation, whereas high levels inhibit by activating the ARF/p53 response. Although the mRNA levels of ARF are induced in both scenarios, the accumulation of ARF protein occurs only when ULF-mediated degradation of ARF is inhibited by c-Myc overexpression. Moreover, the levels of ARF are reduced through ULF-mediated ubiquitination upon DNA damage. Blocking ARF degradation by c-Myc overexpression dramatically stimulates the apoptotic responses. Our study reveals that ARF stability control is crucial for differentiating normal (low) versus oncogenic (high) levels of c-Myc expression and suggests that differential effects on ULF- mediated ARF ubiquitination by c-Myc levels act as a barrier in oncogene-induced stress responses.
Collapse
Affiliation(s)
- Delin Chen
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vivo M, Ranieri M, Sansone F, Santoriello C, Calogero RA, Calabrò V, Pollice A, La Mantia G. Mimicking p14ARF phosphorylation influences its ability to restrain cell proliferation. PLoS One 2013; 8:e53631. [PMID: 23308265 PMCID: PMC3538741 DOI: 10.1371/journal.pone.0053631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
The INK4a/ARF locus on the short arm of chromosome 9 is one of the most frequently altered loci in human cancer. It is generally accepted that ARF is involved in oncogenic checkpoint pathways by sensitizing incipient cancer cells to undergo growth arrest or apoptosis through both p53-dependent and independent pathways. While intensive studies have been focused on ARF activation at the transcriptional level, only recently mechanisms governing ARF turnover have been identified. Here, we show for the first time that p14ARF is a PKC target. Prediction analysis showed many potential phosphorylation sites in PKC consensus sequences within ARF protein, and, among them, the threonine at position 8 was the most conserved. Substitution of this threonine influences both ARF stability and localization. Furthermore, a phosphomimetic ARF mutation reduces the ability to arrest cell growth although the ability to bind MDM2 and stabilize p53 result unaffected. Thus we propose that phosphorylation of ARF in both immortalized and tumor cell lines could be a mechanism to escape ARF surveillance following proliferative and oncogenic stress.
Collapse
Affiliation(s)
- Maria Vivo
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MV); (GLM)
| | - Michela Ranieri
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Federica Sansone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Cristina Santoriello
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Viola Calabrò
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessandra Pollice
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Girolama La Mantia
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MV); (GLM)
| |
Collapse
|
15
|
Li Z, Hou J, Sun L, Wen T, Wang L, Zhao X, Xie Q, Zhang SQ. NMI mediates transcription-independent ARF regulation in response to cellular stresses. Mol Biol Cell 2012; 23:4635-46. [PMID: 23034180 PMCID: PMC3510024 DOI: 10.1091/mbc.e12-04-0304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ETOC: NMI is a novel ARF-interacting protein identified in a yeast two-hybrid screen. NMI inhibits ULF-induced ubiquitin degradation of ARF protein. It mediates transcription-independent ARF regulation and is required for the stabilization and up-regulation of ARF in response to cellular stresses. The ARF tumor suppressor is a product of the INK4a/ARF locus, which is frequently mutated in human cancer. The expression of ARF is up-regulated in response to certain types of DNA damage, oncogene activation, and interferon stimuli. Through interaction with the p53 negative regulator MDM2, ARF controls a well-described p53/MDM2-dependent checkpoint. However, the mechanism of ARF induction is poorly understood. Using a yeast two-hybrid screen, we identify a novel ARF-interacting protein, N-Myc and STATs interactor (NMI). Previously, NMI was known to be a c-Myc–interacting protein. Here we demonstrate that through competitive binding to the ARF ubiquitin E3 ligase (ubiquitin ligase for ARF [ULF]), NMI protects ARF from ULF-mediated ubiquitin degradation. In response to cellular stresses, NMI is induced, and a fraction of NMI is translocated to the nucleus to stabilize ARF. Thus our work reveals a novel NMI-mediated, transcription-independent ARF induction pathway in response to cellular stresses.
Collapse
Affiliation(s)
- Zengpeng Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Muniz VP, Barnes JM, Paliwal S, Zhang X, Tang X, Chen S, Zamba KD, Cullen JJ, Meyerholz DK, Meyers S, Davis JN, Grossman SR, Henry MD, Quelle DE. The ARF tumor suppressor inhibits tumor cell colonization independent of p53 in a novel mouse model of pancreatic ductal adenocarcinoma metastasis. Mol Cancer Res 2011; 9:867-77. [PMID: 21636682 DOI: 10.1158/1541-7786.mcr-10-0475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable, highly metastatic disease that is largely resistant to existing treatments. A better understanding of the genetic basis of PDAC metastasis should facilitate development of improved therapies. To that end, we developed a novel mouse xenograft model of PDAC metastasis to expedite testing of candidate genes associated with the disease. Human PDAC cell lines BxPC-3, MiaPaCa-2, and Panc-1 stably expressing luciferase were generated and introduced by intracardiac injections into immunodeficient mice to model hematogenous dissemination of cancer cells. Tumor development was monitored by bioluminescence imaging. Bioluminescent MiaPaCa-2 cells most effectively recapitulated PDAC tumor development and metastatic distribution in vivo. Tumors formed in nearly 90% of mice and in multiple tissues, including normal sites of PDAC metastasis. Effects of p14ARF, a known suppressor of PDAC, were tested to validate the model. In vitro, p14ARF acted through a CtBP2-dependent, p53-independent pathway to inhibit MiaPaCa-2-invasive phenotypes, which correlated with reduced tumor cell colonization in vivo. These findings establish a new bioluminescent mouse tumor model for rapidly assessing the biological significance of suspected PDAC metastasis genes. This system may also provide a valuable platform for testing innovative therapies.
Collapse
Affiliation(s)
- Viviane Palhares Muniz
- Molecular and Cellular Biology Graduate Program, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ozenne P, Eymin B, Brambilla E, Gazzeri S. The ARF tumor suppressor: Structure, functions and status in cancer. Int J Cancer 2010; 127:2239-47. [DOI: 10.1002/ijc.25511] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Hellström AR, Sundström E, Gunnarsson U, Bed’Hom B, Tixier-Boichard M, Honaker CF, Sahlqvist AS, Jensen P, Kämpe O, Siegel PB, Kerje S, Andersson L. Sex-linked barring in chickens is controlled by the CDKN2A /B tumour suppressor locus. Pigment Cell Melanoma Res 2010; 23:521-30. [DOI: 10.1111/j.1755-148x.2010.00700.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|