1
|
Schopfer LM, Girardo B, Lockridge O, Larson MA. Mass Spectrometry of Putrescine, Spermidine, and Spermine Covalently Attached to Francisella tularensis Universal Stress Protein and Bovine Albumin. Biochem Res Int 2024; 2024:7120208. [PMID: 38347948 PMCID: PMC10861277 DOI: 10.1155/2024/7120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Bacterial and mammalian cells are rich in putrescine, spermidine, and spermine. Polyamines are required for optimum fitness, but the biological function of these small aliphatic compounds has only been partially revealed. Known functions of polyamines include interaction with nucleic acids that alters gene expression and with proteins that modulate activity. Although polyamines can be incorporated into proteins, very few naturally occurring polyaminated proteins have been identified, which is due in part to the difficulty in detecting these adducts. In the current study, bovine albumin and the recombinant universal stress protein from Francisella tularensis were used as models for mass spectrometry analysis of polyaminated proteins. The proteins were covalently bound to putrescine, spermidine, or spermine by the action of carbodiimide or microbial transglutaminase. Tryptic peptides, subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS), were identified using Protein Prospector software. We describe the search parameters for identifying polyaminated peptides and show MS/MS spectra for adducts with putrescine, spermidine, and spermine. Manual evaluation led us to recognize signature ions for polyamine adducts on aspartate, glutamate, and glutamine, as well as neutral loss from putrescine, spermidine, and spermine during the fragmentation process. Mechanisms for the formation of signature ions and neutral loss are presented. Manual evaluation identified a false-positive adduct that had formed during trypsinolysis and resulted in peptide sequence rearrangement. Another false positive initially appeared to be a 71 kDa putrescine adduct on a cysteine residue. However, it was an acrylamide adduct on cysteine for a sample extracted from a polyacrylamide gel. The information presented in this report provides guidance and serves as a model for identifying naturally occurring polyaminated proteins.
Collapse
Affiliation(s)
| | - Benjamin Girardo
- Pathology, Microbiology and Immunology Department, University of Nebraska Medical Center, Omaha, NE, USA
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marilynn A. Larson
- Pathology, Microbiology and Immunology Department, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Rao JN, Xiao L, Wang JY. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology (Bethesda) 2021; 35:328-337. [PMID: 32783609 DOI: 10.1152/physiol.00011.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Li J, Meng Y, Wu X, Sun Y. Polyamines and related signaling pathways in cancer. Cancer Cell Int 2020; 20:539. [PMID: 33292222 PMCID: PMC7643453 DOI: 10.1186/s12935-020-01545-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Polyamines are aliphatic compounds with more than two amino groups that play various important roles in human cells. In cancer, polyamine metabolism dysfunction often occurs, and regulatory mechanisms of polyamine. This review summarizes the existing research on the metabolism and transport of polyamines to study the association of oncogenes and related signaling pathways with polyamines in tumor cells. Drugs that regulate enzymes have been developed for cancer treatment, and in the future, more attention should be paid to treatment strategies that simultaneously modulate polyamine metabolism and carcinogenic signaling pathways. In addition, the polyamine pathway is a potential target for cancer chemoprevention. As an irreversible suicide inhibitor of the ornithine decarboxylase (a vital enzyme of polyamine synthesis), Difluoro-methylornithine had been shown to have the chemoprevention effect on cancer. Therefore, we summarized and analyzed the chemoprophylaxis effect of the difluoromethylornithine in this systematic review.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China.,Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xiaolin Wu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuxin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
4
|
Rasila T, Saavalainen O, Attalla H, Lankila P, Haglund C, Hölttä E, Andersson LC. Astroprincin (FAM171A1, C10orf38): A Regulator of Human Cell Shape and Invasive Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:177-189. [PMID: 30312582 DOI: 10.1016/j.ajpath.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
Our group originally found and cloned cDNA for a 98-kDa type 1 transmembrane glycoprotein of unknown function. Because of its abundant expression in astrocytes, it was called the protein astroprincin (APCN). Two thirds of the evolutionarily conserved protein is intracytoplasmic, whereas the extracellular domain carries two N-glycosidic side chains. APCN is physiologically expressed in placental trophoblasts, skeletal and hearth muscle, and kidney and pancreas. Overexpression of APCN (cDNA) in various cell lines induced sprouting of slender projections, whereas knockdown of APCN expression by siRNA caused disappearance of actin stress fibers. Immunohistochemical staining of human cancers for endogenous APCN showed elevated expression in invasive tumor cells compared with intratumoral cells. Human melanoma cells (SK-MEL-28) transfected with APCN cDNA acquired the ability of invasive growth in semisolid medium (Matrigel) not seen with control cells. A conserved carboxyterminal stretch of 21 amino acids was found to be essential for APCN to induce cell sprouting and invasive growth. Yeast two-hybrid screening revealed several interactive partners, of which ornithine decarboxylase antizyme-1, NEEP21 (NSG1), and ADAM10 were validated by coimmunoprecipitation. This is the first functional description of APCN. These data show that APCN regulates the dynamics of the actin cytoskeletal and, thereby, the cell shape and invasive growth potential of tumor cells.
Collapse
Affiliation(s)
- Tiina Rasila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Olga Saavalainen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hesham Attalla
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Petri Lankila
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland; HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
β 2 -adrenoceptor-induced modulation of transglutaminase 2 transamidase activity in cardiomyoblasts. Eur J Pharmacol 2017; 813:105-121. [DOI: 10.1016/j.ejphar.2017.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
|
6
|
Expression of ODC Antizyme Inhibitor 2 (AZIN2) in Human Secretory Cells and Tissues. PLoS One 2016; 11:e0151175. [PMID: 26963840 PMCID: PMC4786150 DOI: 10.1371/journal.pone.0151175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/24/2016] [Indexed: 01/18/2023] Open
Abstract
Ornithine decarboxylase (ODC) antizyme inhibitor 2 (AZIN2), originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s) of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3) to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated.
Collapse
|
7
|
Song HP, Li RL, Zhou C, Cai X, Huang HY. Atractylodes macrocephala Koidz stimulates intestinal epithelial cell migration through a polyamine dependent mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:23-35. [PMID: 25446597 DOI: 10.1016/j.jep.2014.10.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/15/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodes macrocephala Koidz (AMK), a valuable traditional Chinese herbal medicine, has been widely used in clinical practice for treating patients with disorders of the digestive system. AMK has shown noteworthy promoting effect on improving gastrointestinal function and immunity, which might represent a promising candidate for the treatment of intestinal mucosa injury. The aim of this study was to investigate the efficacy of AMK on intestinal mucosal restitution and the underlying mechanisms via intestinal epithelial (IEC-6) cell migration model. MATERIALS AND METHODS A cell migration model of IEC-6 cells was induced by a single-edge razor blade along the diameter of the cell layers in six-well polystyrene plates. After wounding, the cells were grown in control cultures and in cultures containing spermidine (5μM, SPD, reference drug), alpha-difluoromethylornithine (2.5mM, DFMO, polyamine inhibitor), AMK (50, 100, and 200mg/L), DFMO plus SPD and DFMO plus AMK for 12h. The polyamines content was detected by high-performance liquid chromatography (HPLC) with pre-column derivatization. The Rho mRNAs expression levels were assessed by Q-RT-PCR. The Rho and non-muscle myosin II proteins expression levels were analyzed by Western blot. The formation and distribution of non-muscle myosin II stress fibers were monitored with immunostaining techniques using specific antibodies and observed by confocal microscopy. Cell migration assay was carried out using inverted microscope and the Image-Pro Plus software. All of these indexes were used to evaluate the effectiveness of AMK. RESULTS (1) Treatment with AMK caused significant increases in cellular polyamines content and Rho mRNAs and proteins expression levels, as compared to control group. Furthermore, AMK exposure increased non-muscle myosin II protein expression levels and formation of non-muscle myosin II stress fibers, and resulted in an acceleration of cell migration in IEC-6 cells. (2) Depletion of cellular polyamines by DFMO resulted in a decrease of cellular polyamines levels, Rho mRNAs and proteins expression, non-muscle myosin II protein formation and distribution, thereby inhibiting IEC-6 cell migration. AMK not only reversed the inhibitory effects of DFMO on the polyamines content, Rho mRNAs and proteins expression, non-muscle myosin II protein formation and distribution, but also restored cell migration to control levels. CONCLUSIONS The results obtained from this study revealed that AMK significantly stimulates the migration of IEC-6 cells through a polyamine dependent mechanism, which could accelerate the healing of intestinal injury. These findings suggest the potential value of AMK in curing intestinal diseases characterized by injury and ineffective repair of the intestinal mucosa in clinical practice.
Collapse
Affiliation(s)
- Hou-Pan Song
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China; Spleen and Stomach Institute, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou 510405, PR China.
| | - Ru-Liu Li
- Spleen and Stomach Institute, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou 510405, PR China.
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Airport Road, Baiyun District, Guangzhou 510405, PR China
| | - Xiong Cai
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China
| | - Hui-Yong Huang
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, 300 Xueshi Road, Yuelu District, Changsha 410208, PR China
| |
Collapse
|
8
|
Uncovering protein polyamination by the spermine-specific antiserum and mass spectrometric analysis. Amino Acids 2014; 47:469-81. [PMID: 25471600 DOI: 10.1007/s00726-014-1879-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
Abstract
The polyamines spermidine and spermine, and their precursor putrescine, have been shown to play an important role in cell migration, proliferation, and differentiation. Because of their polycationic property, polyamines are traditionally thought to be involved in DNA replication, gene expression, and protein translation. However, polyamines can also be covalently conjugated to proteins by transglutaminase 2 (TG2). This modification leads to an increase in positive charge in the polyamine-incorporated region which significantly alters the structure of proteins. It is anticipated that protein polyamine conjugation may affect the protein-protein interaction, protein localization, and protein function of the TG2 substrates. In order to investigate the roles of polyamine modification, we synthesized a spermine-conjugated antigen and generated an antiserum against spermine. In vitro TG2-catalyzed spermine incorporation assays were carried out to show that actin, tubulins, heat shock protein 70 and five types of histone proteins were modified with spermine, and modification sites were also identified by liquid chromatography and linear ion trap-orbitrap hybrid mass spectrometry. Subsequent mass spectrometry-based shotgun proteomic analysis also identified 254 polyaminated sites in 233 proteins from the HeLa cell lysate catalyzed by human TG2 with spermine, thus allowing, for the first time, a global appraisal of site-specific protein polyamination. Global analysis of mouse tissues showed that this modification really exists in vivo. Importantly, we have demonstrated that there is a new histone modification, polyamination, in cells. However, the functional significance of histone polyamination demands further investigations.
Collapse
|
9
|
Ray RM, Li C, Bhattacharya S, Naren AP, Johnson LR. Spermine, a molecular switch regulating EGFR, integrin β3, Src, and FAK scaffolding. Cell Signal 2012; 24:931-42. [PMID: 22227249 PMCID: PMC3334284 DOI: 10.1016/j.cellsig.2011.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/19/2011] [Indexed: 12/21/2022]
Abstract
Intracellular polyamine levels are highly regulated by the activity of ornithine decarboxylase (ODC), which catalyzes the first rate-limiting reaction in polyamine biosynthesis, producing putrescine, which is subsequently converted to spermidine and spermine. We have shown that polyamines regulate proliferation, migration, and apoptosis in intestinal epithelial cells. Polyamines regulate key signaling events at the level of the EGFR and Src. However, the precise mechanism of action of polyamines is unknown. In the present study, we demonstrate that ODC localizes in lamellipodia and in adhesion plaques during cell spreading. Spermine regulates EGF-induced migration by modulating the interaction of the EGFR with Src. The EGFR interacted with integrin β3, Src, and focal adhesion kinase (FAK). Active Src (pY418-Src) localized with FAK during spreading and migration. Spermine prevented EGF-induced binding of the EGFR with integrin β3, Src, and FAK. Activation of Src and FAK was necessary for EGF-induced migration in HEK293 cells. EGFR-mediated Src activation in live HEK293 cells using a FRET based Src reporter showed that polyamine depletion significantly increased Src kinase activity. In vitro binding studies showed that spermine directly binds Src, and preferentially interacts with the SH2 domain of Src. The physical interaction between Src and the EGFR was severely attenuated by spermine. Therefore, spermine acts as a molecular switch in regulating EGFR-Src coupling both physically and functionally. Upon activation of the EGFR, integrin β3, FAK and Src are recruited to EGFR leading to the trans-activation of both the EGFR and Src and to the Src-mediated phosphorylation of FAK. The activation of FAK induced Rho-GTPases and subsequently migration. This is the first study to define mechanistically how polyamines modulate Src function at the molecular level.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, The University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
10
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
11
|
Lefèvre PLC, Palin MF, Chen G, Turecki G, Murphy BD. Polyamines are implicated in the emergence of the embryo from obligate diapause. Endocrinology 2011; 152:1627-39. [PMID: 21303959 DOI: 10.1210/en.2010-0955] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Embryonic diapause is a poorly understood phenomenon of reversible arrest of embryo development prior to implantation. In many carnivores, such as the mink (Neovison vison), obligate diapause characterizes each gestation. Embryo reactivation is controlled by the uterus by mechanisms that remain elusive. Because polyamines are essential regulators of cell proliferation and growth, it was hypothesized that they trigger embryo reactivation. To test this, mated mink females were treated with α-difluoromethylornithine, an inhibitor of ornithine decarboxylase 1, the rate-limiting enzyme in polyamine biosynthesis, or saline as a control during the first 5 d of reactivation. This treatment induced polyamine deprivation with the consequence of rearrest in embryo cell proliferation. A mink trophoblast cell line in vitro subjected to α-difluoromethylornithine treatment likewise displayed an arrest in cell proliferation, morphological changes, and intracellular translocation of ornithine decarboxylase 1 protein. The arrest in embryo development deferred implantation for a period consistent with the length of treatment. Successful implantation and parturition ensued. We conclude that polyamine deprivation brought about a reversible rearrest of embryo development, which returned the mink embryo to diapause and induced a second delay in embryo implantation. The results are the first demonstration of a factor essential to reactivation of embryos in obligate diapause.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St. Hyacinthe, Québec, Canada J2S 7C6.
| | | | | | | | | |
Collapse
|
12
|
Elias BC, Bhattacharya S, Ray RM, Johnson LR. Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr 2010; 4:419-30. [PMID: 20448461 DOI: 10.4161/cam.4.3.12043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.
Collapse
Affiliation(s)
- Bertha C Elias
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
13
|
Jainu M, Vijaimohan K, Kannan K. Cissus quadrangularis L. extract attenuates chronic ulcer by possible involvement of polyamines and proliferating cell nuclear antigen. Pharmacogn Mag 2010; 6:225-33. [PMID: 20931084 PMCID: PMC2950387 DOI: 10.4103/0973-1296.66941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 06/22/2010] [Accepted: 07/30/2010] [Indexed: 12/13/2022] Open
Abstract
The present study was designed to investigate whether Cissus quandrangularis extract (CQE) had healing effects on gastric ulcer, through modulation of polyamines and proliferating cell nuclear antigen (PCNA) in rats. Administration of acetic acid (AA) was accompanied by reduced PCNA which was determined by immunohistochemical staining, (3)H-thymidine incorporation using liquid scintillation spectrometry, mitochondrial marker enzymes, polyamine contents and transforming growth factor-alpha (TGF-α) expression in gastric mucosa of rats. Administration of CQE after the application of AA to the stomach enhanced the reduction of ulcer area in a dose-dependent manner which was confirmed by histoarchitecture. Moreover, CQE significantly increased the (3)H-thymidine incorporation and the levels of polyamines such as putrescine, spermine and spermidine in ulcerated rats. In addition, the extract offers gastroprotection in the ulcerated area by increased expression of TGF-α and also reversed the changes in the gastric mucosa of ulcerated rats with significant elevation in mitochondrial tricarboxylic acid (TCA) cycle enzymes and PCNA levels. Based on these results, the healing effect of CQE on AA induced gastric mucosal injury in rats may be attributed to its growth promoting and cytoprotective actions, possibly involving an increase in tissue polyamine contents and cell proliferation.
Collapse
Affiliation(s)
- Mallika Jainu
- Department of Biomedical Engineering, Sri Siva Subramaniya Nadar College of Engineering, SSN Nagar, Chennai - 603 110, India
| | - K. Vijaimohan
- Department of Biochemistry, University of Madras, Guindy, Chennai - 600 025, India
| | - K. Kannan
- Department of Biomedical Engineering, Sri Siva Subramaniya Nadar College of Engineering, SSN Nagar, Chennai - 603 110, India
| |
Collapse
|
14
|
Lentini A, Tabolacci C, Provenzano B, Rossi S, Beninati S. Phytochemicals and protein-polyamine conjugates by transglutaminase as chemopreventive and chemotherapeutic tools in cancer. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:627-633. [PMID: 20227887 DOI: 10.1016/j.plaphy.2010.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 05/28/2023]
Abstract
Identifying novel chemopreventive and chemotherapeutic agents and targeting them to patients at high risk of developing cancer or following curative treatment may go some way towards improving prognosis. This review examines current knowledge regarding the chemopreventive and chemotherapeutic potential of phytochemicals in cancer. Both in vitro and animal studies demonstrate that several phytochemicals increase the activity of intracellular transglutaminases, a family of enzymes involved in cell differentiation, through the covalent conjugation of polyamine to cellular protein, with promising anti-neoplastic properties. The substantial data available on certain plant secondary metabolites makes a strong case for integrating these safe and well-tolerated agents into clinical practice.
Collapse
Affiliation(s)
- Alessandro Lentini
- Department of Biology, University "Tor Vergata" Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
Kanerva K, Mäkitie LT, Bäck N, Andersson LC. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking. Exp Cell Res 2010; 316:1896-906. [PMID: 20188728 DOI: 10.1016/j.yexcr.2010.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.
Collapse
Affiliation(s)
- Kristiina Kanerva
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
16
|
Abstract
Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
17
|
Mäkitie LT, Kanerva K, Polvikoski T, Paetau A, Andersson LC. Brain neurons express ornithine decarboxylase-activating antizyme inhibitor 2 with accumulation in Alzheimer's disease. Brain Pathol 2009; 20:571-80. [PMID: 19832840 DOI: 10.1111/j.1750-3639.2009.00334.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyamines are small cationic molecules that in adult brain are connected to neuronal signaling by regulating inward-rectifier K(+)-channels and different glutamate receptors. Antizyme inhibitors (AZINs) regulate the cellular uptake of polyamines and activate ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine synthesis. Elevated levels of ODC activity and polyamines are detected in various brain disorders including stroke and Alzheimer's disease (AD). We originally reported a novel brain- and testis-specific AZIN, called AZIN2, the distribution of which we have now studied in normal and diseased human brain by in situ hybridization and immunohistochemistry. We found the highest accumulation of AZIN2 in a pearl-on-the-string-like distribution along the axons in both the white and gray matter. AZIN2 was also detected in a vesicle-like distribution in the somas of selected cortical pyramidal neurons. Double-immunofluorescence staining revealed co-localization of AZIN2 and N-methyl D-aspartate-type glutamate receptors (NMDARs) in pyramidal neurons of the cortex. Moreover, we found accumulation of AZIN2 in brains affected by AD, but not by other neurodegenerative disorders (CADASIL or Lewy body disease). ODC activity is mostly linked to cell proliferation, whereas its regulation by AZIN2 in post-mitotically differentiated neurons of the brain apparently serves different purposes. The subcellular distribution of AZIN2 suggests a role in vesicular trafficking.
Collapse
Affiliation(s)
- Laura T Mäkitie
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
18
|
Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS One 2009; 4:e6858. [PMID: 19718454 PMCID: PMC2730566 DOI: 10.1371/journal.pone.0006858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/03/2009] [Indexed: 11/27/2022] Open
Abstract
Background Upon IgE-mediated activation, mast cells (MC) exocytose their cytoplasmic secretory granules and release a variety of bioactive substances that trigger inflammatory responses. Polyamines mediate numerous cellular and physiological functions. We report here that MCs express antizyme inhibitor 2 (AZIN2), an activator of polyamine biosynthesis, previously reported to be exclusively expressed in the brain and testis. We have investigated the intracellular localization of AZIN2 both in resting and activated MCs. In addition, we have examined the functional role of polyamines, downstream effectors of AZIN2, as potential regulators of MC activity. Methodology/Principal Findings Immunostainings show that AZIN2 is expressed in primary and neoplastic human and rodent MCs. We demonstrate that AZIN2 localizes in the Vamp-8 positive, serotonin-containing subset of MC granules, but not in tryptase-containing granules, as revealed by double immunofluorescence stainings. Furthermore, activation of MCs induces rapid upregulation of AZIN2 expression and its redistribution, suggesting a role for AZIN2 in secretory granule exocytosis. We also demonstrate that release of serotonin from activated MCs is polyamine-dependent whereas release of histamine and β-hexosaminidase is not, indicating a granule subtype-specific function for polyamines. Conclusions/Significance The study reports for the first time the expression of AZIN2 outside the brain and testis, and demonstrates the intracellular localization of endogenous AZIN2 in MCs. The granule subtype-specific expression and its induction after MC activation suggest a role for AZIN2 as a local, in situ regulator of polyamine biosynthesis in association with serotonin-containing granules of MCs. Furthermore, our data indicates a novel function for polyamines as selective regulators of serotonin release from MCs.
Collapse
|