1
|
An JY, Kim C, Park NR, Jung HS, Koo TS, Yuk SH, Lee EH, Cho SH. Clinical Anti-aging Efficacy of Propolis Polymeric Nanoparticles Prepared by a Temperature-induced Phase Transition Method. J Cosmet Dermatol 2022; 21:4060-4071. [PMID: 35001491 DOI: 10.1111/jocd.14740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Collagen forms a dermal matrix in the skin. Biosynthesis and decomposition of collagen are the major processes in skin aging. Propolis is rich in flavonoids and phenolic compounds, which are known to be effective in preventing skin aging, including the enhancement of fibroblast proliferation, activation, and growth capacity. OBJECTIVES The aim of this study was to develop a poorly soluble propolis extract as an active ingredient in cosmetic products for anti-aging efficacy. METHODS & RESULTS Polymeric nanoparticles containing propolis extract, polyethylene glycol 400, and poloxamer 407 were prepared via a temperature-induced phase transition method. The particle size of the polymeric nanoparticles was approximately 20.75 nm. The results of an in vitro procollagen type I carboxy-terminal peptide assay and a matrix metalloproteinase-1 inhibition assay showed that the polymeric nanoparticles increased collagen production by 19.81%-24.59% compared to blank (p < 0.05), and significantly reduced intracellular collagenase activity by 7.46%-31.52% compared to blank (p < 0.05). In a clinical trial, polymeric nanoparticles in a cosmetic formulation were applied around the eyes of 24 female subjects for 8 weeks. Five skin parameters were significantly improved after the application of the test ampoule. Visual evaluation using the Global Photo Damage Score showed a significant reduction in wrinkles after the application of the test ampoules (p < 0.001). CONCLUSIONS This study outlines the development of stable polymeric nanoparticles containing poorly soluble propolis in a cosmetic formulation, and its efficacy in wrinkle improvement. The developed polymeric nanoparticles were effective for alleviating wrinkles and can be used for pharmaceutical applications that utilize propolis as antiseptic, anti-inflammatory, antimycotic, antifungal, antibacterial, antiulcer, anticancer, and immunomodulatory agents.
Collapse
Affiliation(s)
- Joo Young An
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea.,Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Chaejin Kim
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.,College of Pharmacy, Chungang University, Seoul, Republic of Korea
| | - Na Rae Park
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yusung, Daejeon, Republic of Korea
| | - Han Soo Jung
- Hanstech, 1576-16, Chungui-ro, Jeongsan-myeon, Cheongyang-gun, Chungcheongnam-do, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Yusung, Daejeon, Republic of Korea
| | - Soon Hong Yuk
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong-ro, Sejong, Republic of Korea
| | - Sun Hang Cho
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Souza TFG, Pierdoná TM, Macedo FS, Aquino PEA, Rangel GFP, Duarte RS, Silva LMA, Viana GSB, Alves APNN, Montenegro RC, Wilke DV, Silveira ER, Alencar NMN. A proline derivative-enriched methanol fraction from Sideroxylon obtusifolium leaves (MFSOL) stimulates human keratinocyte cells and exerts a healing effect in a burn wound model. ACTA ACUST UNITED AC 2021; 54:e10700. [PMID: 34076141 PMCID: PMC8186379 DOI: 10.1590/1414-431x2021e10700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
It was previously demonstrated that the methanol fraction of Sideroxylon obtusifolium (MFSOL) promoted anti-inflammatory and healing activity in excisional wounds. Thus, the present work investigated the healing effects of MFSOL on human keratinocyte cells (HaCaT) and experimental burn model injuries. HaCaT cells were used to study MFSOL's effect on cell migration and proliferation rates. Female Swiss mice were subjected to a second-degree superficial burn protocol and divided into four treatment groups: Vehicle, 1.0% silver sulfadiazine, and 0.5 or 1.0% MFSOL Cream (CrMFSOL). Samples were collected to quantify the inflammatory mediators, and histological analyses were performed after 3, 7, and 14 days. The results showed that MFSOL (50 μg/mL) stimulated HaCaT cells by increasing proliferation and migration rates. Moreover, 0.5% CrMFSOL attenuated myeloperoxidase (MPO) activity and also stimulated the release of interleukin (IL)-1β and IL-10 after 3 days of treatment. CrMFSOL (0.5%) also enhanced wound contraction, promoted improvement of tissue remodeling, and increased collagen production after 7 days and VEGF release after 14 days. Therefore, MFSOL stimulated human keratinocyte (HaCaT) cells and improved wound healing via modulation of inflammatory mediators of burn injuries.
Collapse
Affiliation(s)
- T F G Souza
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - T M Pierdoná
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Faculty of Kinesiology and Recreation Management, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - F S Macedo
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P E A Aquino
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - G F P Rangel
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R S Duarte
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L M A Silva
- Embrapa Agroindustria Tropical, Fortaleza, CE, Brasil
| | - G S B Viana
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A P N N Alves
- Departamento de Clínica Odontológica, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R C Montenegro
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D V Wilke
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - E R Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - N M N Alencar
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
3
|
Granato G, Ruocco MR, Iaccarino A, Masone S, Calì G, Avagliano A, Russo V, Bellevicine C, Di Spigna G, Fiume G, Montagnani S, Arcucci A. Generation and analysis of spheroids from human primary skin myofibroblasts: an experimental system to study myofibroblasts deactivation. Cell Death Discov 2017; 3:17038. [PMID: 28725488 PMCID: PMC5511858 DOI: 10.1038/cddiscovery.2017.38] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/11/2017] [Accepted: 05/28/2017] [Indexed: 12/19/2022] Open
Abstract
Myofibroblasts are activated fibroblasts involved in tissue repair and cancer. They are characterized by de novo expression of α-smooth muscle actin (α-SMA), immunoregulatory phenotype and paracrine interaction with normal and tumorigenic cells leading to cell proliferation. At the end of wound-healing myofibroblasts undergo apoptotic cell death, whereas in vitro-activated fibroblasts are also subjected to a programmed necrosis-like cell death, termed nemosis, associated with cyclooxygenase-2 (COX-2) expression induction and inflammatory response. Furthermore, myofibroblasts form clusters during wound healing, fibrotic states and tumorigenesis. In this study, we generated and analysed clusters such as spheroids from human primary cutaneous myofibroblasts, which represent a part of stromal microenvironment better than established cell lines. Therefore, we evaluated apoptotic or necrotic cell death, inflammation and activation markers during myofibroblasts clustering. The spheroids formation did not trigger apoptosis, necrotic cell death and COX-2 protein induction. The significant decrease of α-SMA in protein extracts of spheroids, the cytostatic effect exerted by spheroids conditioned medium on both normal and cancer cell lines and the absence of proliferation marker Ki-67 after 72 h of three-dimensional culture indicated that myofibroblasts have undergone a deactivation process within spheroids. The cells of spheroids reverted to adhesion growth preserved their proliferation capability and can re-acquire a myofibroblastic phenotype. Moreover, the spontaneous formation of clusters on plastic and glass substrates suggests that aggregates formation could be a physiological feature of cutaneous myofibroblasts. This study represents an experimental model to analyse myofibroblasts deactivation and suggests that fibroblast clusters could be a cell reservoir regulating tissues turnover.
Collapse
Affiliation(s)
- Giuseppina Granato
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Maria R Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Gaetano Calì
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale 'G. Salvatore', National Council of Research, Naples 80131, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Valentina Russo
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Gaetano Di Spigna
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro 'Magna Graecia', Viale Europa, Catanzaro 88100, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
4
|
Le Clerc J, Tricot-Doleux S, Pellen-Mussi P, Pérard M, Jeanne S, Pérez F. Expression of factors involved in dental pulp physiopathological processes by nemotic human pulpal fibroblasts. Int Endod J 2017; 51 Suppl 2:e94-e106. [DOI: 10.1111/iej.12762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- J. Le Clerc
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
- Service d'Odontologie Conservatrice et Endodontie; Centre Hospitalier Universitaire; Rennes France
| | - S. Tricot-Doleux
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
| | - P. Pellen-Mussi
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
| | - M. Pérard
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
- Service d'Odontologie Conservatrice et Endodontie; Centre Hospitalier Universitaire; Rennes France
| | - S. Jeanne
- Faculté d'Odontologie; Equipe Verres et Céramiques; UMR CNRS 6226; Institut des Sciences Chimiques de Rennes, Université de Rennes 1; Rennes France
- Service de Parodontologie; Centre Hospitalier Universitaire; Rennes France
| | - F. Pérez
- Service d'Odontologie Conservatrice et Endodontie; Centre Hospitalier Universitaire; Nantes France
| |
Collapse
|
5
|
Zhang W, Li X, Xu T, Ma M, Zhang Y, Gao MQ. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis. Exp Cell Res 2016; 349:45-52. [DOI: 10.1016/j.yexcr.2016.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/11/2016] [Accepted: 09/24/2016] [Indexed: 01/11/2023]
|
6
|
Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells. Exp Cell Res 2016; 345:17-24. [PMID: 27177832 DOI: 10.1016/j.yexcr.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/23/2022]
Abstract
Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression.
Collapse
|
7
|
Räsänen K, Lehtinen E, Nokelainen K, Kuopio T, Hautala L, Itkonen O, Stenman UH, Koistinen H. Interleukin-6 increases expression of serine protease inhibitor Kazal type 1 through STAT3 in colorectal adenocarcinoma. Mol Carcinog 2015; 55:2010-2023. [PMID: 26663388 DOI: 10.1002/mc.22447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/16/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Inflammation promotes colorectal cancer (CRC) tumorigenesis, but the underlying molecular mechanisms are still being uncovered. Proinflammatory cytokine interleukin-6 (IL-6) stimulates survival signaling in CRC; inflammatory signals also regulate production and activity of proteases and their inhibitors. Over-expression of serine protease inhibitor Kazal type 1 (SPINK1) predicts an unfavorable outcome in colon cancer. The SPINK1 gene contains an IL-6 responsive element, suggesting it could act as an acute phase reactant. We assessed the connection between IL-6 and SPINK1, and the function and mechanism of this signaling. Our results show that Colo205 and HT-29 cells express and secrete SPINK1, and both fibroblast-derived and recombinant IL-6 further increased the SPINK1 levels. Concurrently CRC cells augmented the IL-6 production in fibroblasts. In CRC tissues cancer cells were positive for SPINK1, whereas IL-6 was found in stromal cells. In Colo205 cells IL-6 also stimulated the secretion of trypsin-1 and -2, the key targets of SPINK1 protease inhibition, whereas in HT-29 cells trypsin-1 and -2 levels remained constantly low. Functionally, both IL-6 and SPINK1 increased the motility of the CRC cells. Mechanistically, IL-6 activated the canonical STAT3 pathway and inhibition of STAT3 phosphorylation decreased the levels of SPINK1, trypsin-1 and -2. Taken together, our results indicate a novel link between inflammatory signals originating from the tumor microenvironment and increased SPINK1 levels. This finding has potential therapeutic implications for targeted therapy, as it confirms that SPINK1 acts as an acute phase reactant and that it participates in the paracrine crosstalk with the tumor microenvironment of colon cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kati Räsänen
- Department of Clinical Chemistry, Medicum, University of Helsinki, Helsinki, Finland
| | - Elina Lehtinen
- Department of Clinical Chemistry, Medicum, University of Helsinki, Helsinki, Finland
| | - Kristiina Nokelainen
- Department of Clinical Chemistry, Medicum, University of Helsinki, Helsinki, Finland
| | - Teijo Kuopio
- Department of Pathology, Central Finland Central Hospital, Jyväskylä, Finland.,Department of Biological and Environmental Science, Division of Cell and Molecular Biology, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Hautala
- Department of Clinical Chemistry, Medicum, University of Helsinki, Helsinki, Finland
| | - Outi Itkonen
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, Medicum, University of Helsinki, Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Olczyk P, Komosińska-Vassev K, Winsz-Szczotka K, Koźma EM, Wisowski G, Stojko J, Klimek K, Olczyk K. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing. J Zhejiang Univ Sci B 2013; 13:932-41. [PMID: 23125086 DOI: 10.1631/jzus.b1100310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was aimed at assessing the dynamics of vitronectin (VN), laminin (LN), and heparan sulfate/heparin (HS/HP) content changes during experimental burn healing. METHODS VN, LN, and HS/HP were isolated and purified from normal and injured skin of domestic pigs, on the 3rd, 5th, 10th, 15th, and 21st days following thermal damage. The wounds were treated with apitherapeutic agent (propolis), silver sulfadiazine (SSD), physiological salt solution, and propolis vehicle. VN and LN were quantified using an immunoenzymatic assay and HS/HP was estimated by densitometric analysis. RESULTS Propolis treatment stimulated significant increases in VN, LN, and HS/HP contents during the initial phase of study, followed by a reduction in the estimated extracellular matrix molecules. Similar patterns, although less extreme, were observed after treatment with SSD. CONCLUSIONS The beneficial effects of propolis on experimental wounds make it a potential apitherapeutic agent in topical burn management.
Collapse
Affiliation(s)
- Paweł Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nemotic human dental pulp fibroblasts promote human dental pulp stem cells migration. Exp Cell Res 2013; 319:1544-52. [DOI: 10.1016/j.yexcr.2013.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/20/2013] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
10
|
Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:423809. [PMID: 23781260 PMCID: PMC3679764 DOI: 10.1155/2013/423809] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
Abstract
Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization.
Collapse
|
11
|
Le Clerc J, Pérard M, Pellen-Mussi P, Novella A, Tricot-Doleux S, Jeanne S, Pérez F. Characterization of a programmed necrosis process in 3-dimensional cultures of dental pulp fibroblasts. Int Endod J 2012; 46:308-16. [PMID: 22906091 DOI: 10.1111/j.1365-2591.2012.02114.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/07/2012] [Indexed: 11/28/2022]
Abstract
AIM To analyse and compare the expression of necrosis markers in human lung and dental pulp fibroblasts and to determine whether this process differs by the type of mesenchymal cell. METHODS Human dental pulp fibroblasts were obtained from unerupted third molars. Sound lung and pulpal fibroblasts were cultured in vitro as spheroids to determine the expression of the necrosis hallmark cyclooxygenase-2 (COX-2) mRNA using RT-PCR and the concentrations of vascular endothelial growth factor (VEGF) and hepatocyte growth factor/scatter factor (HGF/SF) proteins using an ELISA test. Cell viability within spheroids was also compared with spheroid diameters over time. RESULTS Increased expression of COX-2 and VEGF was found in all spheroids compared with corresponding monolayers. Although HGF/SF was highly expressed in MRC5 cells, dental pulp fibroblasts aggregates maintained only a basal level compared with monolayer cultures. Further, the observed progressive loss of viable cells explained the decreased diameters of spheroids over time. The results demonstrate that necrosis occurs in sound lung and pulpal fibroblasts. This cell death also displays differences between these two different cell types, as they do not produce the same growth factors quantity release. CONCLUSIONS The necrosis process occurred in human dental pulp fibroblasts and is different between the two cell types studied. This in vitro experimental necrosis model could become an interesting inflammatory tool. More investigations are needed to compare necrosis process in dental pulp fibroblast and inflammation during pulpitis.
Collapse
Affiliation(s)
- J Le Clerc
- Faculté d'Odontologie, Laboratoire de Biomatériaux en Site Osseux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS One 2012; 7:e40951. [PMID: 22911722 PMCID: PMC3401236 DOI: 10.1371/journal.pone.0040951] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/19/2012] [Indexed: 12/31/2022] Open
Abstract
Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11(th) to 15(th) day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage.
Collapse
|
13
|
Improved skin wound epithelialization by topical delivery of soluble factors from fibroblast aggregates. Burns 2011; 38:541-50. [PMID: 22113100 DOI: 10.1016/j.burns.2011.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Timely coverage of an excised burn wound with a split-thickness skin graft, and efficient epithelialization at the donor site wound are key components in the treatment of burn patients. Prompt healing is dependent on paracrine support from underlying dermal connective tissue fibroblasts. STUDY AIM Using the skin graft donor site in pig as a model for epithelialization, our aim was to evaluate if dermal signals, derived from cultured dermal fibroblast aggregates (Finectra), can promote epidermal regeneration. MATERIALS AND METHODS Partial-thickness skin wounds were made with a dermatome on the backs of three domestic pigs. After randomization, topical treatment was initiated by application of Finectra (n=6) or factors from standard fibroblast monolayer cultures (n=6) trapped in a slow-clotting fibrin matrix. Saline was applied to contralateral wounds to serve as corresponding untreated controls (n=12). After 3 days, full-thickness skin samples representing the whole wound area were obtained. Histological sections of these samples were analyzed for epithelialization, cell migration from lateral wound edges and hair follicles, as well as for formation of granulation tissue. RESULTS In response to topical delivery of Finectra, a significant acceleration of epithelialization (p<0.001) across the wound surface as well as from the wound edges was evident. Marked increase in thickness of granulation tissue (p<0.001) was noted in wounds treated with Finectra. Epihelialization originated from adnexal structures in which epithelial islets showed positive staining for cytokeratin-14 and PCNA. CONCLUSION These data show that the fibroblast aggregate-derived paracrine mediators, Finectra, stimulate epidermal regeneration in vivo.
Collapse
|
14
|
Abstract
Vascular inflammation is implicated in both local and systemic inflammatory conditions. Endothelial activation and leukocyte extravasation are key events in vascular inflammation. Lately, the role of the stromal microenvironment as a source of proinflammatory stimuli has become increasingly appreciated. Stromal fibroblasts produce cytokines, growth factors and proteases that trigger and maintain acute and chronic inflammatory conditions. Fibroblasts have been associated with connective tissue pathologies such as scar formation and fibrosis, but recent research has also connected them with vascular dysfunctions. Fibroblasts are able to modulate endothelial cell functions in a paracrine manner, including proinflammatory activation and promotion of angiogenesis. They are also able to activate and attract leukocytes. Stromal fibroblasts can thus cause a proinflammatory switch in endothelial cells, and promote leukocyte infiltration into tissues. New insights in the role of adventitial fibroblasts have further strengthened the link between stromal fibroblasts and proinflammatory vascular functions. This review focuses on the role of fibroblasts in inducing and maintaining vascular inflammation, and describes recent findings and concepts in the field, along with examples of pathologic implications.
Collapse
Affiliation(s)
- A Enzerink
- Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
15
|
Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res 2010; 316:2713-22. [DOI: 10.1016/j.yexcr.2010.04.032] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 12/21/2022]
|
16
|
Räsänen K, Vaheri A. TGF-beta1 causes epithelial-mesenchymal transition in HaCaT derivatives, but induces expression of COX-2 and migration only in benign, not in malignant keratinocytes. J Dermatol Sci 2010; 58:97-104. [PMID: 20399617 DOI: 10.1016/j.jdermsci.2010.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/04/2010] [Accepted: 03/05/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Transforming growth factor beta (TGF-beta) acts as a tumor promoter by inducing epithelial-mesenchymal transition (EMT), which leads to a motile phenotype, enabling invasion and metastasis of cancer cells. Cancer-related inflammation, mediated by prostaglandins, has been proposed as a critical mechanism in conversion of benign cells to malignant. OBJECTIVE Induction of cyclooxygenase 2 (COX-2), producer of prostaglandins, is thought to be a prerequisite for TGF-beta-induced EMT in benign cells. We used HaCaT derivatives, representative of skin cancer progression, to investigate TGF-beta1 mediated EMT response, and the role of COX-2 in it. METHODS Effect of TGF-beta1 was investigated by analyzing cell proliferation, morphology and protein expression. Chemotaxis and scratch-wound assays were used to study migration. RESULTS TGF-beta1 caused proliferation arrest of benign and malignant HaCaT cells, and changed the epithelial morphology of benign and low-grade malignant cells, but not metastatic cells, to mesenchymal spindle-shape. Epithelial junction proteins ZO-1 and E-cadherin were downregulated in all cell lines in response to TGF-beta1, but mesenchymal markers were not induced, suggesting a partial EMT response. COX-2 and migration were induced only in benign HaCaT derivatives. Malignant derivatives did not induce COX-2 in response to TGF-beta 1 treatment, thus emphasizing the role of inflammation in EMT response of benign cells. CONCLUSIONS TGF-beta1 operates via distinct mechanisms in inducing EMT and metastasis, and supporting this we show that TGF-beta1 induces COX-2 and promotes the migration of benign cells, but does not further augment the migration of malignant cells, indicating their resistance to TGF-beta1 in the context of motility.
Collapse
Affiliation(s)
- Kati Räsänen
- Haartman Institute, POB 21, FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|