1
|
Guo MS, Wu Q, Xia Y, Wu J, Wang X, Yuen GKW, Dong TT, Gao J, Tsim KWK. Cholinergic Signaling Mediated by Muscarinic Receptors Triggers the Ultraviolet-Induced Release of Melanosome in Cultured Melanoma Cells. Pigment Cell Melanoma Res 2025; 38:e13201. [PMID: 39344704 DOI: 10.1111/pcmr.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
In skin, melanin is synthesized and stored in melanosomes. In epidermal melanocytes, melanosomes are transported to and internalized by the neighboring keratinocytes, subsequently leading to skin pigmentation. Ultraviolet (UV) radiation induces the release of acetylcholine (ACh) from keratinocytes, which in turn activates ACh receptors (AChRs) on nearby melanocytes, forming a proposed "skin synapse". Here, we illustrated that the UV-induced melanosome release from cultured B16F10 melanoma cells could be mediated by co-actions of ACh. In the cell cultures, UV exposure robustly elicited melanosome release. Applied bethanechol (BeCh), an agonist of muscarinic AChR (mAChR), could significantly enhance the release. In parallel, the intracellular Ca2+ mobilization was regulated. The applied antagonists of M1 and/or M3 mAChRs could block the UV-induced melanosome release and the mobilization of intracellular Ca2+. The phosphorylation of PKC, triggered by UV and BeCh treatments, could be suppressed by the applied mAChR antagonists. The expressions of tethering complex for exocytosis, for example, Sec8, Exo70, and Rab11b, as well as synaptotagmin, were increased under UV exposure together with mAChR agonist: The inductions were fully abolished by M1 or M3 antagonist. Here, we hypothesize that the cholinergic signaling is playing roles in UV-induced exocytosis of melanosomes.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yingjie Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiahui Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gary Ka Wing Yuen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| | - Jin Gao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Neurobiology and Cellular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Karl Wah Keung Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| |
Collapse
|
2
|
Beigl TB, Kjosås I, Seljeseth E, Glomnes N, Aksnes H. Efficient and crucial quality control of HAP1 cell ploidy status. Biol Open 2020; 9:9/11/bio057174. [PMID: 33184093 PMCID: PMC7673356 DOI: 10.1242/bio.057174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The near-haploid human cell line HAP1 recently became a popular subject for CRISPR/Cas9 editing, since only one allele requires modification. Through the gene-editing service at Horizon Discovery, there are at present more than 7500 edited cell lines available and the number continuously increases. The haploid nature of HAP1 is unstable as cultures become diploid with time. Here, we demonstrated some fundamental differences between haploid and diploid HAP1 cells, hence underlining the need for taking control over ploidy status in HAP1 cultures prior to phenotyping. Consequently, we optimized a procedure to determine the ploidy of HAP1 by flow cytometry in order to obtain diploid cultures and avoid ploidy status as an interfering variable in experiments. Furthermore, in order to facilitate this quality control, we validated a size-based cell sorting procedure to obtain the diploid culture more rapidly. Hence, we provide here two streamlined protocols for quality controlling the ploidy of HAP1 cells and document their validity and necessity. This article has an associated First Person interview with the co-first authors of the paper. Summary: Sharing an effective procedure to quality control the near-haploid HAP1 cells for standardized comparison to CRISPR/Cas9 modified versions and demonstrating the need for controlling the spontaneous diploidization of HAP1 cultures.
Collapse
Affiliation(s)
- Tobias B Beigl
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.,Institute of cell biology and immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Ine Kjosås
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Emilie Seljeseth
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.,Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
3
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
4
|
Báez-Matus X, Figueroa-Cares C, Gónzalez-Jamett AM, Almarza-Salazar H, Arriagada C, Maldifassi MC, Guerra MJ, Mouly V, Bigot A, Caviedes P, Cárdenas AM. Defects in G-Actin Incorporation into Filaments in Myoblasts Derived from Dysferlinopathy Patients Are Restored by Dysferlin C2 Domains. Int J Mol Sci 2019; 21:ijms21010037. [PMID: 31861684 PMCID: PMC6981584 DOI: 10.3390/ijms21010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Dysferlin is a transmembrane C-2 domain-containing protein involved in vesicle trafficking and membrane remodeling in skeletal muscle cells. However, the mechanism by which dysferlin regulates these cellular processes remains unclear. Since actin dynamics is critical for vesicle trafficking and membrane remodeling, we studied the role of dysferlin in Ca2+-induced G-actin incorporation into filaments in four different immortalized myoblast cell lines (DYSF2, DYSF3, AB320, and ER) derived from patients harboring mutations in the dysferlin gene. As compared with immortalized myoblasts obtained from a control subject, dysferlin expression and G-actin incorporation were significantly decreased in myoblasts from dysferlinopathy patients. Stable knockdown of dysferlin with specific shRNA in control myoblasts also significantly reduced G-actin incorporation. The impaired G-actin incorporation was restored by the expression of full-length dysferlin as well as dysferlin N-terminal or C-terminal regions, both of which contain three C2 domains. DYSF3 myoblasts also exhibited altered distribution of annexin A2, a dysferlin partner involved in actin remodeling. However, dysferlin N-terminal and C-terminal regions appeared to not fully restore such annexin A2 mislocation. Then, our results suggest that dysferlin regulates actin remodeling by a mechanism that does to not involve annexin A2.
Collapse
Affiliation(s)
- Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
| | - Arlek M. Gónzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
| | - Hugo Almarza-Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
| | - Christian Arriagada
- Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | - María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
| | - María José Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, UMRS 974, Center for Research in Myology, 75013 Paris, France; (V.M.); (A.B.)
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, UMRS 974, Center for Research in Myology, 75013 Paris, France; (V.M.); (A.B.)
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile;
- Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (X.B.-M.); (C.F.-C.); (A.M.G.-J.); (M.C.M.); (M.J.G.)
- Correspondence: ; Tel.: +56-322-508-052
| |
Collapse
|
5
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
6
|
The synaptotagmin juxtamembrane domain is involved in neuroexocytosis. FEBS Open Bio 2015; 5:388-96. [PMID: 25973365 PMCID: PMC4427626 DOI: 10.1016/j.fob.2015.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022] Open
Abstract
The highly cationic juxtamembrane segment of synaptotagmin juxtamembrane domain was synthesized. This peptide inhibits neurotransmitter release at the neuromuscular junction of mice and Drosophila. This peptide localizes mainly on the presynaptic membrane. The synaptotagmin juxtamembrane peptide binds monophosphoinositides in a Ca2+-independent manner. The juxtamembrane segment of synaptotagmin may contribute to the formation of the hemifusion intermediate.
Synaptotagmin is a synaptic vesicle membrane protein which changes conformation upon Ca2+ binding and triggers the fast neuroexocytosis that takes place at synapses. We have synthesized a series of peptides corresponding to the sequence of the cytosolic juxtamembrane domain of synaptotagmin, which is highly conserved among different isoforms and animal species, with or without either a hexyl hydrophobic chain or the hexyl group plus a fluorescein moiety. We show that these peptides inhibit neurotransmitter release, that they localize on the presynaptic membrane of the motor axon terminal at the neuromuscular junction and that they bind monophosphoinositides in a Ca2+-independent manner. Based on these findings, we propose that the juxtamembrane cytosolic domain of synaptotagmin binds the cytosolic layer of the presynaptic membrane at rest. This binding brings synaptic vesicles and plasma membrane in a very close apposition, favouring the formation of hemifusion intermediates that enable rapid vesicle fusion.
Collapse
Key Words
- Anionic phospholipids
- JMS, juxtamembrane segment
- Juxtamembrane domain
- NMJ, neuromuscular junction
- Neuroexocytosis
- Neuromuscular junction
- PM, presynaptic membrane
- SV, synaptic vesicles
- Synaptotagmin
- Syt, synaptotagmin
- TM, transmembrane
- h-FJMS, hexyl fluorescent juxtamembrane segment
- h-JMS, hexyl juxtamembrane segment
- h-sJMS, hexyl scrambled juxtamembrane segment
- α-BTX, alpha-bungarotoxin
Collapse
|
7
|
Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J Neurosci 2013; 33:4514-26. [PMID: 23467367 DOI: 10.1523/jneurosci.2762-12.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dynamin GTPase, a key molecule in endocytosis, mechanically severs the invaginated membrane upon GTP hydrolysis. Dynamin functions also in regulating actin cytoskeleton, but the mechanisms are yet to be defined. Here we show that dynamin 1, a neuronal isoform of dynamin, and cortactin form ring complexes, which twine around F-actin bundles and stabilize them. By negative-staining EM, dynamin 1-cortactin complexes appeared as "open" or "closed" rings depending on guanine nucleotide conditions. By pyrene actin assembly assay, dynamin 1 stimulated actin assembly in mouse brain cytosol. In vitro incubation of F-actin with both dynamin 1 and cortactin led to the formation of long and thick actin bundles, on which dynamin 1 and cortactin were periodically colocalized in puncta. A depolymerization assay revealed that dynamin 1 and cortactin increased the stability of actin bundles, most prominently in the presence of GTP. In rat cortical neurons and human neuroblastoma cell line, SH-SY5Y, both dynamin 1 and cortactin localized on actin filaments and the bundles at growth cone filopodia as revealed by immunoelectron microscopy. In SH-SY5Y cell, acute inhibition of dynamin 1 by application of dynamin inhibitor led to growth cone collapse. Cortactin knockdown also reduced growth cone filopodia. Together, our results strongly suggest that dynamin 1 and cortactin ring complex mechanically stabilizes F-actin bundles in growth cone filopodia. Thus, the GTPase-dependent mechanochemical enzyme property of dynamin is commonly used both in endocytosis and regulation of F-actin bundles by a dynamin 1-cortactin complex.
Collapse
|
8
|
Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:95-156. [PMID: 23317818 DOI: 10.1016/b978-0-12-407704-1.00003-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Filopodia are finger-like cellular protrusions found throughout the metazoan kingdom and perform fundamental cellular functions during development and cell migration. Neurons exhibit a wide variety of extremely complex morphologies. In the nervous system, filopodia underlie many major morphogenetic events. Filopodia have roles spanning the initiation and guidance of neuronal processes, axons and dendrites to the formation of synaptic connections. This chapter addresses the mechanisms of the formation and dynamics of neuronal filopodia. Some of the major lessons learned from the study of neuronal filopodia are (1) there are multiple mechanisms that can regulate filopodia in a context-dependent manner, (2) that filopodia are specialized subcellular domains, (3) that filopodia exhibit dynamic membrane recycling which also controls aspects of filopodial dynamics, (4) that neuronal filopodia contain machinery for the orchestration of the actin and microtubule cytoskeleton, and (5) localized protein synthesis contributes to neuronal filopodial dynamics.
Collapse
Affiliation(s)
- Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Greif KF, Asabere N, Lutz GJ, Gallo G. Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol 2012; 73:27-44. [PMID: 22589224 DOI: 10.1002/dneu.22033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/29/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Synaptotagmin-1 (syt1) is a Ca(2+)-binding protein that functions in regulation of synaptic vesicle exocytosis at the synapse. Syt1 is expressed in many types of neurons well before synaptogenesis begins both in vivo and in vitro. To determine if expression of syt1 has a functional role in neuronal development before synapse formation, we examined the effects of syt1 overexpression and knockdown on the growth and branching of the axons of cultured primary embryonic day 8 chicken forebrain neurons. In vivo these neurons express syt1, and most have not yet extended axons. We present evidence that syt1 plays a role in regulating axon branching, while not regulating overall axon length. To study the effects of overexpression of syt1, we used adenovirus-mediated infection to introduce a syt1-YFP construct, or control GFP construct, into neurons. Syt1 levels were reduced using RNA interference. Overexpression of syt1 increased the formation of axonal filopodia and branches. Conversely, knockdown of syt1 decreased the number of axonal filopodia and branches. Time-lapse analysis of filopodial dynamics in syt1-overexpressing cells demonstrated that elevation of syt1 levels increased both the frequency of filopodial initiation and their lifespan. Taken together these data indicate that syt1 regulates the formation of axonal filopodia and branches before engaging in its conventional functions at the synapse.
Collapse
Affiliation(s)
- Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA.
| | | | | | | |
Collapse
|