1
|
Three-Dimensional Nuclear Telomere Profiling as a Biomarker for Recurrence in Oligodendrogliomas: A Pilot Study. Int J Mol Sci 2020; 21:ijms21228539. [PMID: 33198352 PMCID: PMC7696868 DOI: 10.3390/ijms21228539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mechanisms of recurrence in oligodendrogliomas are poorly understood. Recurrence might be driven by telomere dysfunction-mediated genomic instability. In a pilot study, we investigated ten patients with oligodendrogliomas at the time of diagnosis (first surgery) and after recurrence (second surgery) using three-dimensional nuclear telomere analysis performed with quantitative software TeloView® (Telo Genomics Corp, Toronto, Ontario, Canada). 1p/19q deletion status of each patient was determined by fluorescent in situ hybridization on touch preparation slides. We found that a very specific 3D telomeric profile was associated with two pathways of recurrence in oligodendrogliomas independent of their 1p/19q status: a first group of 8 patients displayed significantly different 3D telomere profiles between both surgeries (p < 0.0001). Their recurrence happened at a mean of 231.375 ± 117.42 days and a median time to progression (TTP) of 239 days, a period defined as short-term recurrence; and a second group of three patients displayed identical 3D telomere profiles between both surgery samples (p > 0.05). Their recurrence happened at a mean of 960.666 ± 86.19 days and a median TTP of 930 days, a period defined as long-term recurrence. Our results suggest a potential link between nuclear telomere architecture and telomere dysfunction with time to recurrence in oligodendrogliomas, independently of the 1p/19q status.
Collapse
|
2
|
Xu L, Yu H, Sun H, Yu X, Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Deliv 2020; 26:1222-1234. [PMID: 31747793 PMCID: PMC6882443 DOI: 10.1080/10717544.2019.1682718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid with potent anti-oxidative and anti-inflammatory potency against chronic diseases. In this study, we suspended AST in different nonionic emulsifiers to produce nanodispersions. The basic physicochemical properties of the produced AST nanodispersions were verified to select the optimized nonionic emulsifier. Among the tested emulsifiers, Polysorbate 20 produced the AST nanoemulsions with smaller particle diameters, narrower size distributions, and higher AST contents among these emulsifiers. The N-methyl-N-nitrosourea (MNU) administered mouse is a chemically induced retinal degeneration (RD) model with rapid progress rate. AST suspended in Polysorbate 20 was demonstrated to ameliorate the dramatic consequences of MNU on retina architectures and function in several different tests encompassing from electrophysiology to histology and molecular tests. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. We found that AST nanodispersions could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of visual signal pathway in degenerative retinas. The MEA assay provided an appropriate example to evaluate the potency of pharmacological compounds on retinal plasticity. In summary, emulsifier type affects the basic physicochemical characteristic of AST nanodispersions. Polysorbate 20 acts as an optimized nonionic emulsifier for the efficient delivery of AST nanodispersions to retina. AST nanodispersions can alleviate the photoreceptor loss and rectify the abnormities in visual signal transmission.
Collapse
Affiliation(s)
- Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Yu
- Department of Otorhinolaryngology, Jinling Hospital, Clinical Hospital of Medical College, Nanjing University, Nanjing, China
| | - Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Diler Durgut B, Turk A, Acar Arslan E, Kamasak T, Sahin S, Dilber B, Turkcan Soguksulu T, Cansu A. An investigation of the ocular toxic effects of levetiracetam therapy in children with epilepsy. Childs Nerv Syst 2019; 35:769-774. [PMID: 30783756 DOI: 10.1007/s00381-019-04076-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the potential toxic effects of levetiracetam monotherapy on ocular tissues in cases of pediatric epilepsy using optical coherence tomography (OCT). METHODS Thirty epileptic children (group 1) receiving levetiracetam monotherapy at a dosage of 20-40 mg/kg/day for at least 1 year with a first diagnosis of epilepsy and 30 age- and gender-matched healthy children (group 2) were included in the study. In addition to a detailed eye examination, peripapillary retinal nerve fiber layer (RNFL) thickness, ganglion cell complex (GCC) thickness, foveal thickness (FT), and central corneal thickness (CCT) were measured in all children by means of spectral domain OCT. The data obtained from the two groups were then subjected to statistical analysis. RESULTS The mean age of both groups was 12 ± 3.64 years [1-12]. The mean duration of levetiracetam in group 1 was 24.07 ± 12.82 months. Mean RNFL values in groups 1 and 2 were 106.1 ± 10.42 and 104.98 ± 10.04 μm, mean GCC values were 94.72 ± 6.26 and 94.4 ± 6 μm, mean FT values were 240.73 ± 17.94 and 240.77 ± 15.97 μm, and mean CCT values were 555.1 ± 44.88 and 540.97 ± 32.65 μm, respectively. No significant difference was determined between the two groups in terms of any parameter. Best corrected visual acuity values of the subjects in both groups were 10/10, and no color vision or visual field deficit was determined. CONCLUSION Levetiracetam monotherapy causes no significant function or morphological change in ocular tissues in pediatric epilepsies.
Collapse
Affiliation(s)
- Betul Diler Durgut
- Faculty of Medicine, Department of Child Neurology, Karadeniz Technical University, Trabzon, Turkey.
| | - Adem Turk
- Faculty of Medicine, Department of Ophthalmology, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Acar Arslan
- Faculty of Medicine, Department of Child Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Tulay Kamasak
- Faculty of Medicine, Department of Child Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Sevim Sahin
- Faculty of Medicine, Department of Child Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Beril Dilber
- Faculty of Medicine, Department of Child Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Tugce Turkcan Soguksulu
- Faculty of Medicine, Department of Ophthalmology, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Cansu
- Faculty of Medicine, Department of Child Neurology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Telegina DV, Kozhevnikova OS, Kolosova NG. Molecular mechanisms of cell death in retina during development of age-related macular degeneration. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
6
|
Abstract
Retinitis pigmentosa is the most common form of hereditary retinal degeneration causing blindness. Great progress has been made in the identification of the causative genes. Gene diagnosis will soon become an affordable routine clinical test because of the wide application of next-generation sequencing. Gene-based therapy provides hope for curing the disease. Investigation into the molecular pathways from mutation to rod cell death may reveal targets for developing new treatment. Related progress with existing systematic review is briefly summarized so that readers may find the relevant references for in-depth reading. Future trends in the study of retinitis pigmentosa are also discussed.
Collapse
Affiliation(s)
- Qingjiong Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Tao Y, Chen T, Yang GQ, Peng GH, Yan ZJ, Huang YF. Anthocyanin can arrest the cone photoreceptor degeneration and act as a novel treatment for retinitis pigmentosa. Int J Ophthalmol 2016; 9:153-8. [PMID: 26949626 DOI: 10.18240/ijo.2016.01.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of heterogeneous inherited retinal diseases that is characterized by primary death rod photoreceptors and the secondary loss of cones. The degeneration of cones causes gradual constriction of visual fields, leaving the central islands that are eventually snuffed out. Studies indicate that the hyperoxia causes oxidative damage in the retina and contributes to the cone death of RP. Moreover, abundant reactive oxidative species (ROS) which are generated in cones may result in mitochondria membrane depolarization, which has been ascribed a central role in the apoptotic process and has been proposed to act as a forward feeding loop for the activation of downstream cascades. Anthocyanin is a potent antioxidant which has been evidenced to be able to counteract oxidative damages, scavenge surplus ROS, and rectify abnormities in the apoptotic cascade. Taken together with its ability to attenuate inflammation which also contributes to the etiology of RP, it is reasonable to hypothesize that the anthocyanin could act as a novel therapeutic strategy to retard or prevent cone degeneration in RP retinas, particularly if the treatment is timed appropriately and delivered efficiently. Future pharmacological investigations will identify the anthocyanin as an effective candidate for PR therapy and refinements of that knowledge would ignite the hope of restoring the visual function in RP patients.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo-Qing Yang
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guang-Hua Peng
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Zhong-Jun Yan
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Yi-Fei Huang
- Department of Ophthalmology, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
8
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
9
|
Tao Y, Chen T, Fang W, Peng G, Wang L, Qin L, Liu B, Fei Huang Y. The temporal topography of the N-Methyl- N-nitrosourea induced photoreceptor degeneration in mouse retina. Sci Rep 2015; 5:18612. [PMID: 26685797 PMCID: PMC4685653 DOI: 10.1038/srep18612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases characterized by the progressive photoreceptors apoptosis. The N-Methyl- N-nitrosourea (MNU) is an alkylating toxicant which could induce photoreceptor apoptosis resembling that of the hereditary RP. However, the detailed process pattern of this degeneration remains poorly characterized. We systemically explored the topography of the photoreceptor degeneration in the MNU treated mouse, and related these spatial data with the time-dependent characteristics of retinal pathology. These temporal topographic data delineated sequential scenes of the progressive photoreceptor degeneration in the MNU treated retinas: focal photoreceptors showed different vulnerabilities to the MNU toxicity and displayed a distinctive spatial- and time-dependent progression. Moreover, the positional asymmetry between the retinal quadrants firstly provided instructive information about the unique toxicology properties of the MNU. Further mechanism study suggested that the up-regulation of Bax and Calpain-2, rather than the Caspase-3, should be responsible for the asymmetry in the MNU induced photoreceptor degeneration. Together with the comparative sensitivities to the neurotoxicity of MNU between two photoreceptor populations, these topographic data would facilitate the standardization of analytic parameters related to the MNU induced RP model, and enhance its application in the therapeutic explorations of human RP.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing, 100853, PR China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032. PR China
| | - Wei Fang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Guanghua Peng
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing, 100853, PR China
| | - Liqiang Wang
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing, 100853, PR China
| | - Limin Qin
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing, 100853, PR China
| | - Bei Liu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yi Fei Huang
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing, 100853, PR China
| |
Collapse
|
10
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
11
|
STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proc Natl Acad Sci U S A 2014; 111:E5716-23. [PMID: 25512545 DOI: 10.1073/pnas.1411248112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inherited photoreceptor degenerations (IPDs), a group of incurable progressive blinding diseases, are caused by mutations in more than 200 genes, but little is known about the molecular pathogenesis of photoreceptor (PR) death. Increased retinal expression of STAT3 has been observed in response to many retinal insults, including IPDs, but the role of this increase in PR death is unknown. Here, we show that the expression of Stat3 is increased in PRs of the Tg(RHO P347S) and Prph2(rds) (/+) mouse models of IPD and is activated by tyrosine phosphorylation. PR-specific deletion of Stat3 substantially accelerated PR degeneration in both mutant strains. In contrast, increased PR-specific expression of ROSA26 (R26) alleles encoding either WT STAT3 (Stat3(wt)) or the gain-of-function variant STAT3(C) (Stat3(C)) improved PR survival in both models. Moreover, PR signaling in Tg(RHO P347S) mice carrying either a R26-Stat3(wt) or R26-Stat3(C) allele demonstrated increased a-wave amplitude of the scotopic electroretinogram. Phosphorylation of STAT3 at tyrosine 705 was required for the prosurvival effect because an R26-Stat3(Y705F) allele was not protective. The prosurvival role of enhanced Stat3 activity was validated using recombinant adenoassociated virus (rAAV) vector-mediated PR Stat3 expression in Tg(RHO P347S) mice. Our findings (i) establish that the increase in endogenous PR Stat3 expression is a protective response in IPDs, (ii) suggest that therapeutic augmentation of PR Stat3 expression has potential as a common neuroprotective therapy for these disorders, and (iii) indicate that prosurvival molecules whose expression is increased in mutant PRs may have promise as novel therapies for IPDs.
Collapse
|
12
|
Ando R, Noda K, Tomaru U, Kamoshita M, Ozawa Y, Notomi S, Hisatomi T, Noda M, Kanda A, Ishibashi T, Kasahara M, Ishida S. Decreased proteasomal activity causes photoreceptor degeneration in mice. Invest Ophthalmol Vis Sci 2014; 55:4682-90. [PMID: 24994871 DOI: 10.1167/iovs.13-13272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE To study the retinal degeneration caused by decreased proteasomal activity in β5t transgenic (β5t-Tg) mice, an animal model of senescence acceleration. METHODS β5t-Tg mice and age-matched littermate control (WT) mice were used. Proteasomal activities and protein level of poly-ubiquitinated protein in retinal extracts were quantified. Fundus images of β5t-Tg mice were taken and their features were assessed. For histologic evaluation, the thicknesses of inner nuclear layer (INL), outer nuclear layer (ONL), and photoreceptor outer segment (OS) were measured. For functional analysis, ERG was recorded under scotopic and photopic illumination conditions. Immunofluorescence (IF) staining and TUNEL were performed to investigate the mechanism of photoreceptor degeneration. RESULTS Chymotrypsin-like activity was partially suppressed in retinal tissues of β5t-Tg mice. Retinal degenerative changes with arterial attenuation were present in β5t-Tg, but not in WT mice. Inner nuclear layer thickness showed no significant change between β5t-Tg and WT mice at 1, 3, 6, and 9 months of age. By contrast, thicknesses of ONL and OS in β5t-Tg mice were significantly decreased at 3, 6, and 9 months compared with those in WT mice. Electroretinograms showed decrease of scotopic a-wave amplitude in β5t-Tg mice. The number of TUNEL-positive cells in ONL were significantly increased in β5t-Tg mice and colocalized with apoptosis-inducing factor, but not with cleaved caspase-3 and -9, indicating that the photoreceptor cell death was induced via a caspase-independent pathway. CONCLUSIONS The current data showed that impaired proteasomal function causes photoreceptor degeneration.
Collapse
Affiliation(s)
- Ryo Ando
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mamoru Kamoshita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mika Noda
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
13
|
Abstract
Significant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review. Likewise, the recent utilization of genes encoding light-sensing molecules to provide new functions to residual retinal cells in the degenerating retina is discussed. While a great deal has been learned over the last two decades, the next decade should result in an increasing number of preclinical studies progressing to human clinical trial, an exciting prospect for patients, those active in research and development and bystanders alike.
Collapse
|
14
|
Extended duration of transgene expression from pegylated POD nanoparticles enables attenuation of photoreceptor degeneration. PLoS One 2013; 8:e82295. [PMID: 24278479 PMCID: PMC3838409 DOI: 10.1371/journal.pone.0082295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most genetically heterogeneous disorder known to cause blindness, involving over 50 different genes. Previously, we have described nanoparticles (NPs) 150 nm in size, comprised of a 3.5 kD peptide (POD) complexed to PEG and DNA (PEGPOD DNA). These NPs expressing GDNF enabled rescue of photoreceptor degeneration in mice up to 11 days post injection. In the current study we examine use of scaffold/ matrix attachment regions (S/MARs), CpG depletion and titration of DNA content of PEGPOD DNA NPs to extend the duration of transgene expression. S/MARs and CpGs did not significantly influence the duration of transgene expression, but did influence its stability. These parameters enabled us to extend transgene expression from 48 hours to 10 weeks. At 77 days post injection, we observed a 76% rescue of the thickness of the retinal outer nuclear layer (ONL) and at 37 days post injection we observed 53% and 55% rescue of the A and B wave ERG amplitudes respectively and 60% rescue of the ONL. Our studies suggest that PEGPOD DNA NPs have potential as gene delivery vectors for the retina.
Collapse
|
15
|
Protective effects of resveratrol in experimental retinal detachment. PLoS One 2013; 8:e75735. [PMID: 24040416 PMCID: PMC3770540 DOI: 10.1371/journal.pone.0075735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress is one of the major factors that trigger photoreceptor apoptosis. To investigate whether resveratrol, a potent antioxidant and small molecule activator of the FoxO pathway, would be neuroprotective against photoreceptor cell death in a rodent model of retinal detachment. METHODS Retinal detachment was created in adult Brown Norway rats by subretinal injection of sodium hyaluronate. The animals were treated daily with vehicle or resveratrol (20 mg/kg) intraperitoneal injection. Photoreceptor death was assessed by counting the number of apoptotic cells with TdT-dUTP terminal nick-end labeling (TUNEL) and measurement of the outer nuclear layer (ONL) thickness 3 days after RD. Changes in expression of FoxO1a, FoxO3a, and FoxO4 were analyzed by western blot. The activity of caspase 3, caspase 8, caspase 9, spectrin and their cleavage forms were studied. RESULTS Three days after retinal detachment, caspase 3, caspase 8 and caspase 9 were significantly activated in the detached retina. Spectrin cleavage products at 120 and 145 kDa were also detected. Both caspase and calpain activation are involved in apoptotic photoreceptor cell death in detached retinas. Treatment with resveratrol increases FoxO1a, FoxO3a, and FoxO4 protein expression in detached retinas only. Resveratrol treatment decreases activation of intrinsic and extrinsic caspase apoptotic pathways triggered by RD. The number of TUNEL-positive cells decreases from 1301±51 cells/mm(2) in control groups to 430±35 cells/mm(2) in treatment groups (p<0.05). Resveratrol treatment also demonstrates 59% less ONL thickness loss compared to controls. CONCLUSIONS Resveratrol treatment up-regulates the FoxO family and blocks Caspase3, 8, and 9 activation. Resveratrol has the potential to be used as a novel therapeutic agent for preventing vision loss in diseases characterized by photoreceptor detachment.
Collapse
|
16
|
Targeting inflammation in emerging therapies for genetic retinal disease. Int J Inflam 2013; 2013:581751. [PMID: 23509666 PMCID: PMC3594980 DOI: 10.1155/2013/581751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/20/2013] [Indexed: 12/22/2022] Open
Abstract
Genetic retinal diseases such as age-related macular degeneration and monogenic diseases such as retinitis pigmentosa account for some of the commonest causes of blindness in the developed world. Diverse genetic abnormalities and environmental causes have been implicated in triggering multiple pathological mechanisms such as oxidative stress, lipofuscin deposits, neovascularisation, and programmed cell death. In recent years, inflammation has also been highlighted although whether inflammatory mediators play a central role in pathogenesis or a more minor secondary role has yet to be established. Despite this, numerous interventional studies, particularly targeting the complement system, are underway with the promise of novel therapeutic strategies for these important blinding conditions.
Collapse
|