1
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Nahas GR, Sherman LS, Sinha G, El Far MH, Petryna A, Munoz SM, Silverio KA, Shaker M, Neopane P, Mariotti V, Rameshwar P. Increased expression of musashi 1 on breast cancer cells has implication to understand dormancy and survival in bone marrow. Aging (Albany NY) 2023; 15:3230-3248. [PMID: 36996499 PMCID: PMC10449290 DOI: 10.18632/aging.204620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.
Collapse
Affiliation(s)
- George R. Nahas
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lauren S. Sherman
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Markos H. El Far
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Andrew Petryna
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Steven M. Munoz
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kimberly A. Silverio
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Maran Shaker
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ 07103, USA
| | - Pujan Neopane
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Veronica Mariotti
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine, Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Wu C, Han R, Yang S, Jiang Y, Shu Z, Liu J, Ji S, Yan W, Liu B. A case–control study of microRNA polymorphisms in gastric cancer screening by SNP chip combined with time of flight mass spectrometry. Biomark Med 2020; 14:1563-1572. [DOI: 10.2217/bmm-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: To explore new SNP sites of miRNAs associated with gastric cancer, thereby providing valuable biomarkers to diagnose and screen gastric cancer. Materials & methods: A 1:1 case–control study was carried out. Microarrays were used to screen the SNP loci of miRNAs in the genomes of matched pairs of patients, 96 with gastric cancer and 96 healthy controls. For validation, mass spectrometry was used to classify miRNA SNP loci in 622 pairs of subjects. Results: rs7143252 was linked to a higher occurrence of gastric cancer. Conclusion: These results suggest that rs7143252 could be used as a specific biomarker to diagnose and screen gastric cancer.
Collapse
Affiliation(s)
- Chuancheng Wu
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| | - Renjie Han
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Department of Occupational Health, Fuzhou Center for Disease Control & Prevention, Fuzhou, Fujian, 350004, China
| | - Shuangfeng Yang
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| | - Yu Jiang
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| | - Zhixiong Shu
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| | - Jin Liu
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| | - Shumi Ji
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| | - Wei Yan
- Department of Science and Education, Hospital of Xianyou County, No. 910, 825 Main Street, Licheng Town, Putian, 351200, China
| | - Baoying Liu
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Environment Factors & Cancer, 1 Xueyuan Road, Minhou Fuzhou, 350122, China
| |
Collapse
|
4
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
5
|
Ebrahimi S, Javid H, Alaei A, Hashemy SI. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet 2020; 98:322-330. [PMID: 32266968 DOI: 10.1111/cge.13750] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
The neuropeptide substance P (SP) triggers a variety of tumor-promoting signaling pathways through the activation of neurokinin-1receptor (NK1R), a class of neurokinin G protein-coupled receptors superfamily. Recent researches in our and other laboratories have shown the overexpression of both SP and NK1R in breast cancer (BC) patients. SP/NK1R signaling is strongly implicated in the pathogenesis of BC through affecting cell proliferation, migration, metastasis, angiogenesis, and resistance. Therefore, SP/NK1R signaling responses must be rigorously regulated; otherwise, they would contribute to a more aggressive BC phenotype. Recently, microRNAs (miRNAs) as a specific class of epigenetic regulators have been shown to regulate NK1R and thus, controlling SP/NK1R signaling responses in BC. This review summarizes the current knowledge of the role of SP/NK1R signaling and its therapeutic potentials in BC. We also provide an overview regarding the effects of miRNA-mediated NK1R regulatory mechanisms in controlling BC tumorigenesis to gain a clearer view and thus better management of cancer.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Alaei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhou Y, Wang M, Tong Y, Liu X, Zhang L, Dong D, Shao J, Zhou Y. miR-206 Promotes Cancer Progression by Targeting Full-Length Neurokinin-1 Receptor in Breast Cancer. Technol Cancer Res Treat 2020; 18:1533033819875168. [PMID: 31506061 PMCID: PMC6740052 DOI: 10.1177/1533033819875168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Substance P plays a pivotal role in human cancer development and progression by binding to its receptor, neurokinin-1. Neurokinin-1 has 2 isoforms: full-length neurokinin-1 and truncated neurokinin-1, the latter lacking the cytoplasmic terminal 96-amino acid residues of the full-length protein. We have identified 3 candidate miR-206 target sites within the 3′-untranslated region of the full-length neurokinin-1 gene from bioinformatics database searches. In the present study, real-time quantitative polymerase chain reaction was performed to quantify the expression of miR-206, and the expression of neurokinin-1 and full-length neurokinin-1 was detected by immunohistochemistry in 82 clinical cases of breast cancer and paired adjacent normal tissues. The miR-206 target gene was demonstrated by using a dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and Western blotting. Transwell migration and invasion, colony formation, and proliferation assays were performed to evaluate the effects of miR-206 expression on various aspects of breast cancer cell behavior in vitro. We showed that miR-206 expression is upregulated in breast cancer cell lines and breast cancer tissues when compared to that in adjacent normal tissues, and full-length neurokinin-1 expression inversely correlates with Tumor Lymph Node Metastasis (TNM) stage and lymph node metastasis. Western blotting, quantitative real-time polymerase chain reaction, and dual-luciferase reporter assays demonstrated that miR-206 binds the 3′-untranslated region of full-length neurokinin-1 messenger RNA, regulating protein expression. We showed that the overexpression of miR-206 promotes breast cancer cell invasion, migration, proliferation, and colony formation in vitro. The present study furthers the current understanding of the mechanisms underlying breast cancer pathogenesis and may be useful for the development of novel targeted therapies.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Department of Clinical Laboratory, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yingna Tong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaobin Liu
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Lufang Zhang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Shao
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Edwardson MA, Zhong X, Fiandaca MS, Federoff HJ, Cheema AK, Dromerick AW. Plasma microRNA markers of upper limb recovery following human stroke. Sci Rep 2018; 8:12558. [PMID: 30135469 PMCID: PMC6105620 DOI: 10.1038/s41598-018-31020-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Preclinical investigators have implicated several microRNAs as regulators of gene expression promoting neural plasticity following experimental stroke in rodent models. Our goal was to determine whether similar microRNAs might be identifiable in plasma of humans with variable recovery from stroke. Plasma was collected 19 days post-stroke from 27 participants with mild-moderate upper extremity impairment enrolled in the Critical Periods After Stroke Study (CPASS). MicroRNA expression was assessed using TaqMan microRNA assays. Good clinical recovery was defined as ≥6 point change in the Action Research Arm Test (ARAT) score from baseline to 6 months, with 22 subjects showing good and 5 showing poor recovery. When comparing the good versus poor recovery groups, six microRNAs showed significantly decreased expression – miR-371-3p, miR-524, miR-520g, miR-1255A, miR-453, and miR-583, while 3 showed significantly increased expression - miR-941, miR-449b, and miR-581. MiR-371-3p and miR-941 have previously been associated with neural repair mechanisms; none of the significant microRNAs have previously been associated with stroke. The 9 microRNAs converge on pathways associated with axonal guidance, developmental biology, and cancer. We conclude that plasma microRNAs may be informative regarding human neural repair mechanisms during stroke recovery and probably differ from those seen in experimental stroke models.
Collapse
Affiliation(s)
- Matthew A Edwardson
- Georgetown University, Department of Neurology, Washington, DC, USA. .,Georgetown University and MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Washington, DC, USA.
| | - Xiaogang Zhong
- Georgetown University, Department of Biostatistics, Bioinformatics, and Biomathematics, Washington, DC, USA
| | - Massimo S Fiandaca
- University of California Irvine, Department of Neurology, Irvine, CA, USA.,University of California Irvine, Department of Neurological Surgery, Irvine, CA, USA.,University of California Irvine, Department of Anatomy & Neurobiology, Irvine, CA, USA
| | - Howard J Federoff
- University of California Irvine, Department of Neurology, Irvine, CA, USA.,UC Irvine Health System, Irvine, CA, USA
| | - Amrita K Cheema
- Georgetown University, Department of Biochemistry, Washington, DC, USA.,Georgetown University, Department of Oncology, Washington, DC, USA
| | - Alexander W Dromerick
- Georgetown University, Department of Neurology, Washington, DC, USA.,Georgetown University and MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Washington, DC, USA.,VA Medical Center, Washington, DC, USA
| |
Collapse
|
8
|
Nahas GR, Murthy RG, Patel SA, Ganta T, Greco SJ, Rameshwar P. The RNA-binding protein Musashi 1 stabilizes the oncotachykinin 1 mRNA in breast cancer cells to promote cell growth. FASEB J 2015; 30:149-59. [PMID: 26373800 DOI: 10.1096/fj.15-278770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
Substance P and its truncated receptor exert oncogenic effects. The high production of substance P in breast cancer cells (BCCs) is caused by the enhancement of tachykinin (TAC)1 translation by cytosolic factor. In vitro translational studies and mRNA stabilization analyses indicate that BCCs contain the factor needed to increase TAC1 translation and to stabilize the mRNA. Prediction of protein folding, RNA-shift analysis, and proteomic analysis identified a 40 kDa molecule that interacts with the noncoding exon 7. Western blot analysis and RNA supershift identified Musashi 1 (Msi1) as the binding protein. Ectopic expression of TAC1 in nontumorigenic breast cells (BCs) indicates that TAC1 regulates its stability by increasing Msi1. Using a reporter gene system, we showed that Msi1 competes with microRNA (miR)130a and -206 for the 3' UTR of exon 7/TAC1. In the absence of Msi1 and miR130a and -206, reporter gene activity decreased, indicating that Msi1 expression limits TAC1 expression. Tumor growth was significantly decreased when nude BALB/c mice were injected with Msi1-knockdown BCCs. In summary, the RNA-binding protein Msi1 competes with miR130a and -206 for interaction with TAC1 mRNA, to stabilize and increase its translation. Consequently, these interactions increase tumor growth.
Collapse
Affiliation(s)
- George R Nahas
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Raghav G Murthy
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shyam A Patel
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Teja Ganta
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven J Greco
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
9
|
Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med 2015; 49:1567-78. [PMID: 25824446 DOI: 10.1136/bjsports-2014-094073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). OBJECTIVE We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). DESIGN Gene ontology (ie, gene product elucidation)/meta-analysis. DATA SOURCES 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. DATA EXTRACTION g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. DATA SYNTHESIS Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. RESULTS Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. CONCLUSIONS Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. TRIAL REGISTRATION NUMBER CRD42014009800.
Collapse
|