1
|
Xu Y, Du W, Xiao Y, Gao K, Li J, Li S. A Number of the N-terminal RASSF Family: RASSF7. Anticancer Agents Med Chem 2024; 24:889-895. [PMID: 36200241 DOI: 10.2174/1871520622666220930094149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
The Ras association domain family 7 (RASSF7, also named HRC1), a potential tumor-related gene, located on human chromosome 11p15, has been identified as an important member of the N-terminal RASSF family. Whereas, the molecular biological mechanisms of RASSF7 in tumorigenesis remain to be further established. We perform a systematic review of the literature and assessment from PUBMED and MEDLINE databases in this article. RASSF7 plays a significant role in mitosis, microtubule growth, apoptosis, proliferation and differentiation. Many research literature shows that the RASSF7 could promote the occurrence and advance of human tumors by regulating Aurora B, MKK4, MKK7, JNK, YAP, MEK, and ERK, whereas, it might inhibit c-Myc and thus lead to the suppression of tumorigenesis. The pregulation of RASSF7 often occurs in various malignancies such as lung cancer, neuroblastoma, thyroid neoplasm, hepatocellular cancer, breast cancer and gastric cancer. The expression stage of RASSF7 is positively correlated with the tumor TNM stage. In this review, we primarily elaborate on the acknowledged structure and progress in the various biomechanisms and research advances of RASSF7, especially the potential relevant signaling pathways. We hope that RASSF7 , a prospective therapeutic target for human malignancies, could play an available role in future anti-cancer treatment.
Collapse
Affiliation(s)
- Yang Xu
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
- Department of Urology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Wei Du
- Department of Urology, Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, People's Republic of China
| | - Yongshuang Xiao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Keyu Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jie Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Shuofeng Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
2
|
DNA damage triggers the nuclear accumulation of RASSF6 tumor suppressor protein via CDK9 and BAF53 to regulate p53-target gene transcription. Mol Cell Biol 2021; 42:e0031021. [PMID: 34898277 DOI: 10.1128/mcb.00310-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear-localization and nuclear-export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53-target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation including CDK9, BAF53, BAF60a, and p53.
Collapse
|
3
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
4
|
Li C, Qian T, He R, Wan C, Liu Y, Yu H. Endoplasmic Reticulum-Plasma Membrane Contact Sites: Regulators, Mechanisms, and Physiological Functions. Front Cell Dev Biol 2021; 9:627700. [PMID: 33614657 PMCID: PMC7889955 DOI: 10.3389/fcell.2021.627700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) forms direct membrane contact sites with the plasma membrane (PM) in eukaryotic cells. These ER-PM contact sites play essential roles in lipid homeostasis, ion dynamics, and cell signaling, which are carried out by protein-protein or protein-lipid interactions. Distinct tethering factors dynamically control the architecture of ER-PM junctions in response to intracellular signals or external stimuli. The physiological roles of ER-PM contact sites are dependent on a variety of regulators that individually or cooperatively perform functions in diverse cellular processes. This review focuses on proteins functioning at ER-PM contact sites and highlights the recent progress in their mechanisms and physiological roles.
Collapse
Affiliation(s)
- Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
He J, Fu L, Li Q. Rsf‑1 regulates malignant melanoma cell viability and chemoresistance via NF‑κB/Bcl‑2 signaling. Mol Med Rep 2019; 20:3487-3498. [PMID: 31485613 PMCID: PMC6755232 DOI: 10.3892/mmr.2019.10610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Remodeling and spacing factor 1 (Rsf-1) has been reported as overexpressed in numerous cancers; however, its expression, biological functions and mechanisms in malignant melanoma remain unknown. In the present study, the expression of Rsf-1 was investigated in 50 cases of malignant melanoma samples using immunohistochemistry. The results revealed that Rsf-1 expression was elevated in 38% of specimens. MTT, colony formation, Transwell and flow cytometry assays were performed to investigate the functions of Rsf-1. Knockdown of Rsf-1 in the MV3 and A375 melanoma cell lines decreased the viability, invasion and cell cycle transition of cells. Conversely, overexpression of Rsf-1 in M14 cells with low endogenous Rsf-1 expression induced opposing effects. Further analysis revealed that Rsf-1 knockdown decreased matrix metalloproteinase-2, cyclin E and phosphorylated-IκB expression. Additionally, Rsf-1 depletion reduced cisplatin resistance and significantly increased the cisplatin-associated apoptotic rate, whereas Rsf-1 overexpression exhibited opposing effects. Rsf-1 also maintained the mitochondrial membrane potential following cisplatin treatment. Analysis of apoptosis-associated proteins revealed that Rsf-1 positively regulated B-cell lymphoma 2 (Bcl-2), cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2, and downregulated Bcl-2-associated X protein expression. Nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB) inhibition reversed the effects of Rsf-1 on Bcl-2. In conclusion, Rsf-1 was overexpressed in malignant melanoma and may contribute to the malignant behaviors of melanoma cells, possibly via the regulation of NF-κB signaling. Therefore, Rsf-1 may be a potential therapeutic target in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jiani He
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Fu
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qingchang Li
- Department of Pathology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
6
|
Iwasa H, Hossain S, Hata Y. Tumor suppressor C-RASSF proteins. Cell Mol Life Sci 2018; 75:1773-1787. [PMID: 29353317 PMCID: PMC11105443 DOI: 10.1007/s00018-018-2756-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite different. Six C-RASSF proteins (RASSF1-6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/Hippo domain, while four N-RASSF proteins (RASSF7-10) lack it. C-RASSF proteins interact with mammalian Ste20-like kinases-the core kinases of the tumor suppressor Hippo pathway-and cross-talk with this pathway. Some of them share the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|
7
|
Iwasa H, Jiang X, Hata Y. RASSF6; the Putative Tumor Suppressor of the RASSF Family. Cancers (Basel) 2015; 7:2415-26. [PMID: 26690221 PMCID: PMC4695899 DOI: 10.3390/cancers7040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Humans have 10 genes that belong to the Ras association (RA) domain family (RASSF). Among them, RASSF7 to RASSF10 have the RA domain in the N-terminal region and are called the N-RASSF proteins. In contradistinction to them, RASSF1 to RASSF6 are referred to as the C-RASSF proteins. The C-RASSF proteins have the RA domain in the middle region and the Salvador/RASSF/Hippo domain in the C-terminal region. RASSF6 additionally harbors the PSD-95/Discs large/ZO-1 (PDZ)-binding motif. Expression of RASSF6 is epigenetically suppressed in human cancers and is generally regarded as a tumor suppressor. RASSF6 induces caspase-dependent and -independent apoptosis. RASSF6 interacts with mammalian Ste20-like kinases (homologs of Drosophila Hippo) and cross-talks with the Hippo pathway. RASSF6 binds MDM2 and regulates p53 expression. The interactions with Ras and Modulator of apoptosis 1 (MOAP1) are also suggested by heterologous protein-protein interaction experiments. RASSF6 regulates apoptosis and cell cycle through these protein-protein interactions, and is implicated in the NF-κB and JNK signaling pathways. We summarize our current knowledge about RASSF6 and discuss what common and different properties RASSF6 and the other C-RASSF proteins have.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Xinliang Jiang
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
8
|
Iwasa H, Maimaiti S, Kuroyanagi H, Kawano S, Inami K, Timalsina S, Ikeda M, Nakagawa K, Hata Y. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans. Exp Cell Res 2013; 319:931-45. [DOI: 10.1016/j.yexcr.2013.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 01/12/2023]
|