1
|
Circular RNA circPGD contributes to gastric cancer progression via the sponging miR-16-5p/ABL2 axis and encodes a novel PGD-219aa protein. Cell Death Dis 2022; 8:384. [PMID: 36104322 PMCID: PMC9472197 DOI: 10.1038/s41420-022-01177-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
CircRNAs have critical effects on tumor development and progression. However, circPGD effect on gastric cancer (GC) is still elusive. Nuclear and cytoplasmic RNA fractionation, and RNA-FISH assay examined the localization of circPGD in MGC-803 cells. qRT-PCR was conducted to detect the expression and prognostic significance of circPGD, miR-16-5p, and ABL2 within GC tissues. Meanwhile, qRT-PCR, luciferase reporter assays, rescue, and western blotting assays confirmed the interactions between circPGD, miR-16-5p, and ABL2. Transwell, wound healing, and colony-formation assays, as well as CCK-8 and cell apoptosis assays, analyzed the functions of circPGD, miR-16-5p, ABL2, as well as PGD-219aa within GC cells. Western blotting and cell immunofluorescence experiments detected the differences in the expression of the related proteins. Finally, xenograft and metastatic mouse models were used to investigate circPGD function in vivo. Mass spectrometry was used to detect the existence of PGD-219aa in MGC-803 cells. CircPGD was localized in the cytoplasm and nucleus of MGC-803 cells. Compared with the control, circPGD and ABL2 expression increased within GC tissues and cells, and the miR-16-5p level was decreased. Functionally, circPGD promoted cell proliferation, migration and suppressed apoptosis in vitro. Mechanistically, circPGD sponged miR-16-5p for relieving miR-16-5p suppression on the corresponding target ABL2 via the SMAD2/3 and YAP signaling pathways. In addition, circPGD encodes a novel PGD-219aa protein that can enhance the growth and migration of GC cells, while inhibiting GC cells apoptosis via the SMAD2/3 and YAP signaling pathways. Furthermore, circPGD overexpression enhanced tumor aggressiveness, while circPGD knockdown inhibited tumor growth. Overall, circPGD has a novel oncogenic effect on GC cells, indicating the potential of circPGD as the tumorigenic factor and a promising diagnostic marker for GC.
Collapse
|
2
|
Targeting ABL1 or ARG Tyrosine Kinases to Restrict HIV-1 Infection in Primary CD4+ T-Cells or in Humanized NSG Mice. J Acquir Immune Defic Syndr 2020; 82:407-415. [PMID: 31658184 DOI: 10.1097/qai.0000000000002144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies support dasatinib as a potent inhibitor of HIV-1 replication. However, a functional distinction between 2 kinase targets of the drug, ABL1 and ARG, has not been assessed. SETTING We used primary CD4 T-cells, CD8-depleted peripheral blood mononuclear cells (PBMCs) from a treatment naïve HIV-1 patient, and a humanized mouse model of HIV-1 infection. We assessed the roles of ABL1 and ARG during HIV-1 infection and use of dasatinib as a potential antiviral against HIV-1 in humanized mice. METHODS Primary CD4 T-cells were administered siRNA targeting ABL1 or ARG, then infected with HIV-1 containing luciferase reporter viruses. Quantitative polymerase chain reaction of viral integration of 4 HIV-1 strains was also assessed. CD8-depleted PBMCs were treated for 3 weeks with dasatinib. NSG mice were engrafted with CD34 pluripotent stem cells from human fetal cord blood, and infected with Ba-L virus after 19 weeks. Mice were treated daily with dasatinib starting 5 weeks after infection. RESULTS siRNA knockdown of ABL1 or ARG had no effect on viral reverse transcripts, but increased 2-LTR circles 2- to 4-fold and reduced viral integration 2- to 12-fold. siRNA knockdown of ARG increased SAMHD1 activation, whereas knockdown of either kinase reduced RNA polymerase II activation. Treating CD8-depleted PBMCs from a treatment-naïve patient with 50 nM of dasatinib for 3 weeks reduced p24 levels by 99.8%. Ba-L (R5)-infected mice injected daily with dasatinib showed a 95.1% reduction in plasma viral load after 2 weeks of treatment. CONCLUSIONS We demonstrate a novel nuclear role for ABL1 and ARG in ex vivo infection experiments, and proof-of-principle use of dasatinib in a humanized mouse model of HIV-1 infection.
Collapse
|
3
|
Torsello B, De Marco S, Bombelli S, Chisci E, Cassina V, Corti R, Bernasconi D, Giovannoni R, Bianchi C, Perego RA. The 1ALCTL and 1BLCTL isoforms of Arg/Abl2 induce fibroblast activation and extra cellular matrix remodelling differently. Biol Open 2019; 8:bio.038554. [PMID: 30837227 PMCID: PMC6451347 DOI: 10.1242/bio.038554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fibrotic tissue and the stroma adjacent to cancer cells are characterised by the presence of activated fibroblasts (myofibroblasts) which play a role in creating a supportive tissue characterised by abundant extracellular matrix (ECM) secretion. The myofibroblasts remodel this tissue through secreted molecules and modulation of their cytoskeleton and specialized contractile structures. The non-receptor protein tyrosine kinase Arg (also called Abl2) has the unique ability to bind directly to the actin cytoskeleton, transducing diverse extracellular signals into cytoskeletal rearrangements. In this study we analysed the 1ALCTL and 1BLCTL Arg isoforms in Arg−/− murine embryonal fibroblasts (MEF) cell line, focusing on their capacity to activate fibroblasts and to remodel ECM. The results obtained showed that Arg isoform 1BLCTL has a major role in proliferation, migration/invasion of MEF and in inducing a milieu able to modulate tumour cell morphology, while 1ALCTL isoform has a role in MEF adhesion maintaining active focal adhesions. On the whole, the presence of Arg in MEF supports the proliferation, activation, adhesion, ECM contraction and stiffness, while the absence of Arg affected these myofibroblast features. This article has an associated First Person interview with the first author of the paper. Summary: The non-receptor tyrosine kinase Arg and its isoforms modulate the extra cellular matrix production that is relevant in fibrosis and tumour growth, this may open future novel therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Torsello
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sofia De Marco
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Silvia Bombelli
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisa Chisci
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Cassina
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberta Corti
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy.,Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Davide Bernasconi
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Giovannoni
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto A Perego
- School of Medicine & Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
4
|
Liu Y, Shao C, Zhu L, Jiang S, Li G, Zhang W, Lin Y, Ni Y, Cao H, Shao S. High Expression of ABL2 Suppresses Apoptosis in Gastric Cancer. Dig Dis Sci 2018; 63:2294-2300. [PMID: 29767389 DOI: 10.1007/s10620-018-5111-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/04/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND Diseases associated with Abelson-related gene (also called ABL2) include leukemia; furthermore, previous researches have studied the expressions and functions of ABL2 in different types of malignancies and found that it plays an important role in almost all kinds of cancers. AIMS Nevertheless, the mechanism of ABL2 in gastric cancer (GC) remains vague. METHODS In the present study, the level of ABL2 in human GC tissues was detected by immunohistochemistry. Also, the GC cell lines MGC-803 and BGC-823 were selected to stably knock down and overexpress the level of ABL2 by corresponding lentiviral vectors. Puromycin was used to maintain the stable low expression of ABL2 MGC-803 cells compared with control cells; what is more, the high expression of ABL2 BGC-823 cells was also obtained. Based on it, we detected the proteins associated with apoptosis, such as Bcl-2 family and caspase family by western blotting. RESULTS The most appropriate concentration of puromycin to kill GC cells is 1 µg/mL; then, we obtained the corresponding stable cell lines. Furthermore, we found that high level of ABL2 in BGC-823 cells increased the expression of Bcl-XL, total PARP, and caspase3, while decreased the level of cleaved caspase3 and cleaved caspase9. Consistent results are received in MGC-803 cells. In addition, ABL2 overexpression led to the protein related with Ras/Erk and PI3K/AKT signaling pathway increased; also, we found that the major proteins play a significant role in it. CONCLUSION All the data showed that high expression of ABL2 suppresses apoptosis through Ras/Erk and PI3K/AKT signaling pathway in GC cell lines.
Collapse
Affiliation(s)
- Yun Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Linqi Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Sihong Jiang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Guanlin Li
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wei Zhang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yajing Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Ying Ni
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Cao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. Oncotarget 2017; 8:113502-113515. [PMID: 29371925 PMCID: PMC5768342 DOI: 10.18632/oncotarget.23056] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) has a poor prognosis despite novel biological targeted therapies. Tumor aggressiveness and poor survival may correlate with tumor grade at diagnosis and with complex metabolic alterations, also involving glucose and lipid metabolism. However, currently no grade-specific metabolic therapy addresses these alterations. Here we used primary cell cultures from ccRCC of low- and high-grade to investigate the effect on energy state and reduced pyridine nucleotide level, and on viability and proliferation, of specific inhibition of glycolysis with 2-deoxy-D-glucose (2DG), or fatty acid oxidation with Etomoxir. Our primary cultures retained the tissue grade-dependent modulation of lipid and glycogen storage and aerobic glycolysis (Warburg effect). 2DG affected lactate production, energy state and reduced pyridine nucleotide level in high-grade ccRCC cultures, but the energy state only in low-grade. Rather, Etomoxir affected energy state in high-grade and reduced pyridine nucleotide level in low-grade cultures. Energy state and reduced pyridine nucleotide level were evaluated by ATP and reduced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) dye quantification, respectively. 2DG treatment impaired cell proliferation and viability of low-grade ccRCC and normal cortex cultures, whereas Etomoxir showed a cytostatic and cytotoxic effect only in high-grade ccRCC cultures. Our data indicate that in ccRCC the Warburg effect is a grade-dependent feature, and fatty acid oxidation can be activated for different grade-dependent metabolic needs. A possible grade-dependent metabolic therapeutic approach in ccRCC is also highlighted.
Collapse
|
6
|
De Vlieghere E, Wagemans G, De Backer S, Drebert Z, Tommelein J, Rousseau Q, Weyn B, Van Troys M, Bracke M, De Wever O. Quantitative evaluation of single cell spread on collagen matrices. Exp Cell Res 2016; 349:168-178. [PMID: 27751839 DOI: 10.1016/j.yexcr.2016.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Cells change their morphology as a response to environmental cues. The quantitative evaluation of single cell spread on extracellular matrices, such as type I collagen, is a key tool in cancer research. Inherent to the manual scoring of cellular spread is inter-observer but also intra-observer variation. To overcome these problems, we have developed the Morphology Analysis Software (MAS). MAS scores phase-contrast images of cells on native type I collagen gels and identifies whether a cell has a spread or round morphology using a combination of four unique parameters: the presence of a cellular extension, the cell area, the cell eccentricity and cell circularity. The MAS software scores are equivalent to the average score of five independent observers but MAS is faster, more objective and standardized. A functional screening assay using six cytokines identified TGFα as a stimulator of HCT8/E11 and SK-BR-3 single cell spreading on top of type I collagen gels. This change in morphology correlates with increased migration potential as evidenced by xCELLigence migration assays and are counteracted by EGFR signaling pathway inhibitors. This underscores the use of morphology classification on a population of unlabeled cells as read-out of an important cancer cell property and the potential for the MAS software in drug screening strategies.
Collapse
Affiliation(s)
- E De Vlieghere
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | - G Wagemans
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | | | - Z Drebert
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | - J Tommelein
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | - Q Rousseau
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | - B Weyn
- DCILabs, Keerbergen, Belgium
| | - M Van Troys
- Cancer Research Institute Ghent (CRIG), Ghent University, Belgium; Department of Biochemistry, Fac. Medicine, Gent University, Belgium
| | - M Bracke
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium
| | - O De Wever
- Laboratory of Experimental Cancer Research, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Belgium.
| |
Collapse
|
7
|
Major Action of Endogenous Lysyl Oxidase in Clear Cell Renal Cell Carcinoma Progression and Collagen Stiffness Revealed by Primary Cell Cultures. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2473-85. [PMID: 27449199 DOI: 10.1016/j.ajpath.2016.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Human clear cell renal cell carcinoma (ccRCC) is therapy resistant; therefore, it is worthwhile studying in depth the molecular aspects of its progression. In ccRCC the biallelic inactivation of the VHL gene leads to stabilization of hypoxia-inducible factors (HIFs). Among the targets of HIF-1α transcriptional activity is the LOX gene, which codes for the inactive proenzyme (Pro-Lox) from which, after extracellular secretion and proteolysis, derives the active enzyme (Lox) and the propeptide (Lox-PP). By increasing stiffness of extracellular matrix by collagen crosslinking, Lox promotes tumor progression and metastasis. Lox and Lox-PP can reenter the cells where Lox promotes cell proliferation and invasion, whereas Lox-PP acts as tumor suppressor because of its Ras recision and apoptotic activity. Few data are available concerning LOX in ccRCC. Using an in vitro model of ccRCC primary cell cultures, we performed, for the first time in ccRCC, a detailed study of endogenous LOX and also investigated their transcriptomic profile. We found that endogenous LOX is overexpressed in ccRCC, is involved in a positive-regulative loop with HIF-1α, and has a major action on ccRCC progression through cellular adhesion, migration, and collagen matrix stiffness increment; however, the oncosuppressive action of Lox-PP was not found to prevail. These findings may suggest translational approaches for new therapeutic strategies in ccRCC.
Collapse
|
8
|
Torsello B, Bianchi C, Meregalli C, Di Stefano V, Invernizzi L, De Marco S, Bovo G, Brivio R, Strada G, Bombelli S, Perego RA. Arg tyrosine kinase modulates TGF-β1 production in human renal tubular cells under high-glucose conditions. J Cell Sci 2016; 129:2925-36. [PMID: 27298228 DOI: 10.1242/jcs.183640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/23/2016] [Indexed: 01/15/2023] Open
Abstract
Renal tubular cells are involved in the tubular interstitial fibrosis observed in diabetic nephropathy. It is debated whether epithelial-mesenchymal transition (EMT) affects tubular cells, which under high-glucose conditions overproduce transforming growth factor-β (TGF-β), a fibrogenic cytokine involved in interstitial fibrosis development. Our study investigated the involvement of non-receptor tyrosine kinase Arg (also called Abl2) in TGF-β production. Human primary tubular cell cultures exposed to high-glucose conditions were used. These cells showed an elongated morphology, stress fibers and vimentin increment but maintained most of the epithelial marker expression and distribution. In these cells exposed to high glucose, which overexpressed and secreted active TGF-β1, Arg protein and activity was downregulated. A further TGF-β1 increase was induced by Arg silencing with siRNA, as with the Arg tyrosine kinase inhibitor Imatinib. In the cells exposed to high glucose, reactive oxygen species (ROS)-dependent Arg kinase downregulation induced both RhoA activation, through p190RhoGAPA (also known as ARHGAP35) modulation, and proteasome activity inhibition. These data evidence a new specific involvement of Arg kinase into the regulation of TGF-β1 expression in tubular cells under high-glucose conditions and provide cues for new translational approaches in diabetic nephropathy.
Collapse
Affiliation(s)
- Barbara Torsello
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Chiara Meregalli
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Vitalba Di Stefano
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Lara Invernizzi
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Giorgio Bovo
- Anatomo-Pathology Unit, San Gerardo Hospital, Monza 20900, Italy
| | - Rinaldo Brivio
- Clinical Pathology Unit, San Gerardo Hospital, Monza 20900, Italy
| | - Guido Strada
- Urology Unit, Bassini ICP Hospital, Milano 20092, Italy
| | - Silvia Bombelli
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, Milano-Bicocca University, Monza 20900, Italy
| |
Collapse
|