1
|
Ergun P, Kipcak S, Gunel NS, Bor S, Sozmen EY. Roles of Cytokines in Pathological and Physiological Gastroesophageal Reflux Exposure. J Neurogastroenterol Motil 2024; 30:290-302. [PMID: 37957115 PMCID: PMC11238103 DOI: 10.5056/jnm22186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 11/15/2023] Open
Abstract
Background/Aims Gastroesophageal reflux disease is frequently observed and has no definitive treatment. There are 2 main views on the pathogenesis of gastroesophageal reflux disease. The first is that epithelial damage starts from the mucosa by acidic-peptic damage and the inflammatory response of granulocytes. The other view is that T-lymphocytes attract chemoattractants from the basal layer to the mucosa, and granulocytes do not migrate until damage occurs. We aim to investigate the inflammatory processes occurring in the esophageal epithelium of the phenotypes at the molecular level. We also examined the effects of these changes on tissue integrity. Methods Patients with mild and severe erosive reflux, nonerosive reflux, reflux hypersensitivity, and functional heartburn were included. Inflammatory gene expressions (JAK/STAT Signaling and NFKappaB Primer Libraries), chemokine protein levels, and tissue integrity were examined in the esophageal biopsies. Results There was chronic inflammation in the severe erosion group, the acute response was also triggered. In the mild erosion group, these 2 processes worked together, but homeostatic cytokines were also secreted. In nonerosive groups, T-lymphocytes were more dominant. In addition, the inflammatory response was highly triggered in the reflux hypersensitivity and functional heartburn groups, and it was associated with physiological reflux exposure and sensitivity. Conclusions "Microinflammation" in physiological acid exposure groups indicates that even a mild trigger is sufficient for the initiation and progression of inflammatory activity. Additionally, the anti-inflammatory cytokines were highly increased. The results may have a potential role in the treatment of heartburn symptoms and healing of the mucosa.
Collapse
Affiliation(s)
- Pelin Ergun
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Sezgi Kipcak
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Nur S Gunel
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Serhat Bor
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Eser Y Sozmen
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Zhao Y, Ma T, Zou D. Identification of Unique Transcriptomic Signatures and Hub Genes Through RNA Sequencing and Integrated WGCNA and PPI Network Analysis in Nonerosive Reflux Disease. J Inflamm Res 2021; 14:6143-6156. [PMID: 34848992 PMCID: PMC8627320 DOI: 10.2147/jir.s340452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/12/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose Transcriptomic studies on gastroesophageal reflux disease are scarce, and gene expression signatures in nonerosive reflux disease (NERD) remain elusive. The aim of the study was to identify gene expression profiles and potential hub genes in NERD. Patients and Methods We performed RNA sequencing on biopsy samples from nine consecutive patients with NERD and six healthy controls. Differentially expressed genes (DEGs) were analysed with the DESeq2 R package. A DEG-based protein-protein interaction (PPI) network was constructed to filter hub genes using Cytoscape. Weighted gene coexpression network analysis (WGCNA) was conducted to identify the coexpression relationships of all modules and explore the relationship between gene sets and clinical traits. Results In total, 1195 DEGs were identified, including 649 upregulated and 546 downregulated genes involved in regulating the inflammatory response and epithelial cell differentiation. Overlap of the PPI and WGCNA networks identified five shared genes, namely, THY1, BMP2, LOX, KDR and MMP9, as candidate hub genes in NERD. Quantitative PCR analysis of the expression of these five genes confirmed the sequencing results. Receiver operating characteristic analyses indicated that these hub genes had diagnostic potential for NERD patients. Gene set enrichment analysis confirmed that each hub gene was closely associated with the pathophysiological processes of NERD. In addition, a regulatory network comprising 42 transcription factors (TFs), 28 miRNAs and 5 hub genes was established. Conclusion The five core genes may be promising biomarkers of NERD. The TF/miRNA/hub gene network can improve the understanding of the molecular mechanisms underlying disease progression.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
3
|
Choi YS, Na HG, Bae CH, Song SY, Kim YD. Pepsin exposure in a non-acidic environment upregulates mucin 5AC (MUC5AC) expression via matrix metalloproteinase 9 (MMP9)/nuclear factor κB (NF-κB) in human airway epithelial cells. Int Forum Allergy Rhinol 2021; 11:894-901. [PMID: 32846027 DOI: 10.1002/alr.22685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastric reflux (GR) is a backflow of gastric content to the aerodigestive tract. GR was previously found to be associated with inflammatory airway diseases and a potential cause of airway remodeling. Chronic exposure to gastric content may induce damage from nose to lung, because digestive enzymes and acidity are toxic to airway epithelial cells. Recently, the toxicity of pepsin in a non-acidic environment was found to increase proinflammatory cytokines and receptors in the epithelium of the aerodigestive tract. However, the effect of pepsin in non-acidic conditions on mucin expression has not been investigated in human airway epithelial cells. The purpose of this study was to evaluate the effect of pepsin on mucin 5AC (MUC5AC) expression in upper and lower airway epithelial cells as an important potential factor of non-acidic GR-related airway inflammation. METHODS In NCI-H292 cells and human nasal epithelial cells (HNEpCs), the effects and signaling pathways of pepsin on MUC5AC expression were examined using reverse-transcription polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, zymography, Western blot, and immunofluorescence staining. RESULTS Pepsin increased MUC5AC expression in non-acidic condition of NCI-H292 cells and HNEpCs. Further, pepsin activated matrix metalloproteinase 9 (MMP9) and phosphorylated nuclear factor κB (NF-κB). Moreover, inhibitors of MMP9 and NF-κB significantly attenuated pepsin-induced MUC5AC expression, and the knockdown of NF-κB by small interfering RNA (siRNA) significantly blocked pepsin-induced MUC5AC expression in human airway epithelial cells. CONCLUSION These findings suggest that pepsin increased MUC5AC expression in non-acidic conditions via the activation of MMP9 and NF-κB in human airway epithelial cells.
Collapse
Affiliation(s)
- Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
4
|
Doukas PG, Vageli DP, Sasaki CT, Judson BL. Pepsin Promotes Activation of Epidermal Growth Factor Receptor and Downstream Oncogenic Pathways, at Slightly Acidic and Neutral pH, in Exposed Hypopharyngeal Cells. Int J Mol Sci 2021; 22:ijms22084275. [PMID: 33924087 PMCID: PMC8074291 DOI: 10.3390/ijms22084275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pepsin refluxate is considered a risk factor for laryngopharyngeal carcinogenesis. Non-acidic pepsin was previously linked to an inflammatory and tumorigenic effect on laryngopharyngeal cells in vitro. Yet there is no clear evidence of the pepsin-effect on a specific oncogenic pathway and the importance of pH in this process. We hypothesized that less acidic pepsin triggers the activation of a specific oncogenic factor and related-signalling pathway. To explore the pepsin-effect in vitro, we performed intermittent exposure of 15 min, once per day, for a 5-day period, of human hypopharyngeal primary cells (HCs) to pepsin (1 mg/mL), at a weakly acidic pH of 5.0, a slightly acidic pH of 6.0, and a neutral pH of 7.0. We have documented that the extracellular environment at pH 6.0, and particularly pH 7.0, vs. pH 5.0, promotes the pepsin-effect on HCs, causing increased internalized pepsin and cell viability, a pronounced activation of EGFR accompanied by NF-κB and STAT3 activation, and a significant upregulation of EGFR, AKT1, mTOR, IL1β, TNF-α, RELA(p65), BCL-2, IL6 and STAT3. We herein provide new evidence of the pepsin-effect on oncogenic EGFR activation and its related-signaling pathway at neutral and slightly acidic pH in HCs, opening a window to further explore the prevention and therapeutic approach of laryngopharyngeal reflux disease.
Collapse
|
5
|
Li W, Li Q, Wei L, Pan X, Huang D, Gan J, Tang S. Rosmarinic Acid Analogue-11 Induces Apoptosis of Human Gastric Cancer SGC-7901 Cells via the Epidermal Growth Factor Receptor (EGFR)/Akt/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit Basic Res 2019; 25:63-75. [PMID: 30799435 PMCID: PMC6404632 DOI: 10.12659/msmbr.913331] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND According to the latest statistics from the American Cancer Society, there will be 1.73 million cancer cases and more than 600 000 cancer deaths in the United States in 2018, among which there will be 26 240 new cases of gastric cancer and around 10 800 deaths arising from gastric cancer. The objective of this study was to use RAA-11 to intervene in SGC-7901 cells to understand its effects on cell proliferation and apoptosis, and to explore the apoptosis mechanism. MATERIAL AND METHODS MTT assay was used to detect the survival of human gastric mucosal epithelial GES-1 cells and human gastric cancer SGC-7901 cells. Colony formation assay was used to observe the colony forming ability in SGC-7901 cells. The apoptotic rate of SGC-7901 cells was evaluated by Hoechst33258 staining and flow cytometry. qRT-PCR was used to analyze the epidermal growth factor receptor (EGFR) mRNA expression level in SGC-7901 cells. Western blot was used to examine the expression levels of caspase-3, Bcl-2, BAX, EGFR, Akt, p-Akt, and NF-κB in SGC-7901 cells. RESULTS RAA-11 is capable of inhibiting the proliferation and inducing the apoptosis of SGC-7901 cells in a time- and dose-dependent manner. Western blot showed that the expression levels of caspase-3 and BAX were upregulated, while the expression levels of Bcl-2, EGFR, Akt, p-Akt, and NF-κB in the SGC-7901 cells were downregulated. CONCLUSIONS Apoptosis can be induced in SGC-7901 cells by RAA-11, potentially via the EGFR/Akt/NF-κB pathway, indicating that RAA-11 might be a potent agent for cancer treatment.
Collapse
Affiliation(s)
- Wanting Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Qing Li
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Liqun Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xiaohang Pan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Daohang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Jialiang Gan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Shuangyi Tang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
6
|
Schoen I, Koitzsch S. ATF3-Dependent Regulation of EGR1 in vitro and in vivo. ORL J Otorhinolaryngol Relat Spec 2017; 79:239-250. [PMID: 28803237 DOI: 10.1159/000478937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Activating transcription factor 3 (ATF3) and early growth response protein 1 (EGR1) are reported to interact, but their use as prognostic factors in cancer is discussed controversially. METHODS We measured ATF3 and EGR1 gene expression changes in human mini-organ cultures (MOCs) of healthy nasal epithelia, UM-SCC-22B, and FADUDD cells after acid reflux exposure. Next, ATF3 and EGR1 gene expression was analysed in tumour tissues and related to the median expression of autologous reference tissue samples. RESULTS ATF3 and EGR1 mRNA expression was significantly reduced after consecutive exposure of MOCs at pH <7.0 to artificial gastric juice (refluxate). In contrast, ATF3 mRNA was upregulated significantly within the first hour of incubation. EGR1 mRNA exhibited no significant changes. The analysed cell lines exhibited a cell line-specific alteration. In FADUDD cells, the upregulation of EGR1 was significant after refluxate exposure, but in HN-SCC 22B, no significant changes were detected. The analysis of the HNSCC samples confirmed the heterogeneous data of the literature. CONCLUSION The data maintain the hypothesis that ATF3 and EGR1 are involved in the beginning of inflammatory processes. Whether these two transcription factors act as tumour suppressors or promoters is context dependent and warrants analysis in further studies.
Collapse
Affiliation(s)
- Ilona Schoen
- Laboratory of Experimental Oncology, Department of Otolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
7
|
Laczkó D, Wang F, Johnson FB, Jhala N, Rosztóczy A, Ginsberg GG, Falk GW, Rustgi AK, Lynch JP. Modeling Esophagitis Using Human Three-Dimensional Organotypic Culture System. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28627413 DOI: 10.1016/j.ajpath.2017.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Esophagitis, whether caused by acid reflux, allergic responses, graft-versus-host disease, drugs, or infections, is a common condition of the gastrointestinal tract affecting nearly 20% of the US population. The instigating agent typically triggers an inflammatory response. The resulting inflammation is a risk factor for the development of esophageal strictures, Barrett esophagus, and esophageal adenocarcinoma. Research into the pathophysiology of these conditions has been limited by the availability of animal and human model systems. Three-dimensional organotypic tissue culture (OTC) is an innovative three-dimensional multicellular in vitro platform that recapitulates normal esophageal epithelial stratification and differentiation. We hypothesized that this platform can be used to model esophagitis to better understand the interactions between immune cells and the esophageal epithelium. We found that human immune cells remain viable and respond to cytokines when cultured under OTC conditions. The acute inflammatory environment induced in the OTC significantly affected the overlying epithelium, inducing a regenerative response marked by increased cell proliferation and epithelial hyperplasia. Moreover, oxidative stress from the acute inflammation induced DNA damage and strand breaks in epithelial cells, which could be reversed by antioxidant treatment. These findings support the importance of immune cell-mediated esophageal injury in esophagitis and confirms the utility of the OTC platform to characterize the underlying molecular events in esophagitis.
Collapse
Affiliation(s)
- Dorottya Laczkó
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Fang Wang
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - F Bradley Johnson
- Division of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, Pennsylvania
| | - András Rosztóczy
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P Lynch
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Wang L, Tan JJ, Wu T, Zhang R, Wu JN, Zeng FF, Liu YL, Han XY, Li YF, Li XP. Association between Laryngeal Pepsin Levels and the Presence of Vocal Fold Polyps. Otolaryngol Head Neck Surg 2016; 156:144-151. [PMID: 28045635 DOI: 10.1177/0194599816676471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To determine whether pepsin, the main component of refluxed gastric contents, is significantly associated with vocal fold polyps and to evaluate the diagnostic value of pepsin in vocal fold polyps’ tissues. Study Design Cross-sectional study. Setting Nanfang Hospital of Southern Medical University. Subjects and Methods The study included 32 patients with vocal fold polyps and 16 healthy controls between 2011 and 2012. Reflux symptom index and reflux finding score assessments, 24-hour combined multichannel intraluminal impedance and pH monitoring, and biopsy of the vocal fold polyp tissues or posterior laryngeal mucosa (healthy controls) for immunohistochemical pepsin staining were performed. Results The expression of pepsin was significantly higher in patients with vocal fold polyps than in controls (28/32, 75% vs 5/16, 31.25%; P < .001). The pepsin levels were significantly positively correlated with upright position pharyngeal acid reflux and esophageal reflux parameters adjusted by age. Based on pepsin staining data, the sensitivity and negative predictive values of 24-hour pH monitoring, the reflux symptom index, and the reflux finding score were 70% to 84.62%, whereas their specificity and positive predictive values were relatively low (20%-31.58%). Conclusion Pepsin reflux may be a risk factor for vocal fold polyps formation. In addition, pepsin immunohistochemical analysis of polyp biopsy samples appears to be a more sensitive and effective test for diagnosing laryngopharyngeal reflux than the reflux symptom index, the reflux finding score, and 24-hour pH monitoring in a clinical setting.
Collapse
Affiliation(s)
- Lu Wang
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Jie Tan
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhang
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Nuan Wu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang-Fang Zeng
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - You-Li Liu
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Yan Han
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Fei Li
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang-Ping Li
- Department of Otolaryngology–Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|