1
|
Wang T, Liu X, Li J, Yue Y, Li J, Wang M, Wei N, Hao L. Mechanisms of mechanical force in periodontal homeostasis: a review. Front Immunol 2024; 15:1438726. [PMID: 39221238 PMCID: PMC11361942 DOI: 10.3389/fimmu.2024.1438726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical forces affect periodontal health through multiple mechanisms. Normally, mechanical forces can boost soft and hard tissue metabolism. However, excessive forces may damage the periodontium or result in irreversible inflammation, whereas absence of occlusion forces also leads to tissue atrophy and bone resorption. We systemically searched the PubMed and Web of Science databases and found certain mechanisms of mechanical forces on immune defence, extracellular matrix (ECM) metabolism, specific proteins, bone metabolism, characteristic periodontal ligament stem cells (PDLSCs) and non-coding RNAs (ncRNAs) as these factors contribute to periodontal homeostasis. The immune defence functions change under forces; genes, signalling pathways and proteinases are altered under forces to regulate ECM metabolism; several specific proteins are separately discussed due to their important functions in mechanotransduction and tissue metabolism. Functions of osteocytes, osteoblasts, and osteoclasts are activated to maintain bone homeostasis. Additionally, ncRNAs have the potential to influence gene expression and thereby, modify tissue metabolism. This review summarizes all these mechanisms of mechanical forces on periodontal homeostasis. Identifying the underlying causes, this review provides a new perspective of the mechanisms of force on periodontal health and guides for some new research directions of periodontal homeostasis.
Collapse
Affiliation(s)
- Tianqi Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinran Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of General Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Fassio A, Atzeni F, Rossini M, D’Amico V, Cantatore F, Chimenti MS, Crotti C, Frediani B, Giusti A, Peluso G, Rovera G, Scolieri P, Raimondo V, Gatti D. Osteoimmunology of Spondyloarthritis. Int J Mol Sci 2023; 24:14924. [PMID: 37834372 PMCID: PMC10573470 DOI: 10.3390/ijms241914924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The mechanisms underlying the development of bone damage in the context of spondyloarthritis (SpA) are not completely understood. To date, a considerable amount of evidence indicates that several developmental pathways are crucially involved in osteoimmunology. The present review explores the biological mechanisms underlying the relationship between inflammatory dysregulation, structural progression, and osteoporosis in this diverse family of conditions. We summarize the current knowledge of bone biology and balance and the foundations of bone regulation, including bone morphogenetic protein, the Wnt pathway, and Hedgehog signaling, as well as the role of cytokines in the development of bone damage in SpA. Other areas surveyed include the pathobiology of bone damage and systemic bone loss (osteoporosis) in SpA and the effects of pharmacological treatment on focal bone damage. Lastly, we present data relative to a survey of bone metabolic assessment in SpA from Italian bone specialist rheumatology centers. The results confirm that most of the attention to bone health is given to postmenopausal subjects and that the aspect of metabolic bone health may still be underrepresented. In our opinion, it may be the time for a call to action to increase the interest in and focus on the diagnosis and management of SpA.
Collapse
Affiliation(s)
- Angelo Fassio
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | - Fabiola Atzeni
- Unità Operativa Complessa di Reumatologia Azienda Ospedaliero Universitaria Policlinico “G. Martino” di Messina, 35128 Messina, Italy; (F.A.); (V.D.)
| | - Maurizio Rossini
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | - Valeria D’Amico
- Unità Operativa Complessa di Reumatologia Azienda Ospedaliero Universitaria Policlinico “G. Martino” di Messina, 35128 Messina, Italy; (F.A.); (V.D.)
| | - Francesco Cantatore
- Unità Operativa Complessa di Reumatologia Universitaria, Polic. “Riuniti” di Foggia, 71122 Foggia, Italy;
| | - Maria Sole Chimenti
- Dipartimento di Medicina dei Sistemi, Reumatologia, Allergologia e Immunologia Clinica Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Chiara Crotti
- UOC Osteoporosi e Malattie Metaboliche dell’Osso Dipartimento di Reumatologia e Scienze Mediche ASST-G. Pini-CTO, 20122 Milan, Italy;
| | - Bruno Frediani
- Department of Medical, Surgical and Neuroscience Sciences, Rheumatology University of Siena, 53100 Siena, Italy;
| | - Andrea Giusti
- SSD Malattie Reumatologiche e del Metabolismo Osseo, Dipartimento delle Specialità Mediche, ASL3, 16132 Genova, Italy;
| | - Giusy Peluso
- UOC di Reumatologia-Fondazione Policlinico Universitario Agostino Gemelli-IRCSS, 00168 Rome, Italy;
| | - Guido Rovera
- Ospedale S. Andrea, Divisione Reumatologia, 13100 Vercelli, Italy;
| | - Palma Scolieri
- Ambulatorio di Reumatologia Ospedale Nuovo Regina Margherita ASL ROMA1, 00153 Rome, Italy;
| | | | - Davide Gatti
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | | |
Collapse
|
3
|
Jepsen K, Tietmann C, Martin C, Kutschera E, Jäger A, Wüllenweber P, Gaveglio L, Cardaropoli D, Sanz-Sánchez I, Fimmers R, Jepsen S. Synergy of Regenerative Periodontal Surgery and Orthodontics Improves Quality of Life of Patients with Stage IV Periodontitis: 24-Month Outcomes of a Multicenter RCT. Bioengineering (Basel) 2023; 10:695. [PMID: 37370626 PMCID: PMC10295428 DOI: 10.3390/bioengineering10060695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In stage IV periodontitis patients with pathologic tooth migration (PTM), interdisciplinary treatment includes regenerative periodontal surgery (RPS) with an application of biomaterials and orthodontic therapy (OT) to restore function, esthetics and thereby quality of life (QoL). In a 24-month randomized trial we explored the synergy between regenerative medicine and biomechanical force application. The following methods were used: Forty-three patients had been randomized to a combined treatment comprising RPS and subsequent OT starting either 4 weeks (early OT) or 6 months (late OT) post-operatively. Clinical periodontal parameters and oral health-related QoL (GOHAI) were recorded up to 24 months. We obtained the following results: Mean clinical attachment gain (∆CAL ± SD) was significantly higher with early OT (5.96 ± 2.1 mm) versus late OT (4.65 ± 1.76 mm) (p = 0.034). Pocket closure (PPD ≤ 4 mm) was obtained in 91% of defects with early OT compared to 90% with late OT. GOHAI-scores decreased significantly from 26.1 ± 7.5 to 9.6 ± 4.7 (early OT) and 25.1 ± 7.1 to 12.7 ± 5.6 (late OT). Inconclusion, teeth severely compromised by intrabony defects and PTM can be treated successfully by RPS followed by early OT with the advantage of an overall reduced treatment time. As a result of the combined periodontal-orthodontic therapy, the oral health-related QoL of patients was significantly improved. Early stimulation of wound healing with orthodontic forces had a favorable impact on the outcomes of regenerative periodontal surgery.
Collapse
Affiliation(s)
- Karin Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (C.T.)
| | - Christina Tietmann
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (C.T.)
- Private Practice for Periodontology, Krefelder Strasse 73, 52070 Aachen, Germany
| | - Conchita Martin
- BIOCRAN Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Eric Kutschera
- Department of Orthodontics, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany
| | - Peter Wüllenweber
- Private Practice for Orthodontics, Theaterstraße 98-102, 52062 Aachen, Germany
| | - Lorena Gaveglio
- Private Practice, Corso Galileo Ferraris 148, 10129 Turino, Italy
| | | | | | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, 53127 Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (C.T.)
| |
Collapse
|
4
|
Ma C, Du T, Niu X, Fan Y. Biomechanics and mechanobiology of the bone matrix. Bone Res 2022; 10:59. [PMID: 36042209 PMCID: PMC9427992 DOI: 10.1038/s41413-022-00223-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure. Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described.
Collapse
Affiliation(s)
- Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
5
|
Sun C, Janjic Rankovic M, Folwaczny M, Stocker T, Otto S, Wichelhaus A, Baumert U. Effect of Different Parameters of In Vitro Static Tensile Strain on Human Periodontal Ligament Cells Simulating the Tension Side of Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms23031525. [PMID: 35163446 PMCID: PMC8835937 DOI: 10.3390/ijms23031525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the effects of different magnitudes and durations of static tensile strain on human periodontal ligament cells (hPDLCs), focusing on osteogenesis, mechanosensing and inflammation. Static tensile strain magnitudes of 0%, 3%, 6%, 10%, 15% and 20% were applied to hPDLCs for 1, 2 and 3 days. Cell viability was confirmed via live/dead cell staining. Reference genes were tested by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and assessed. The expressions of TNFRSF11B, ALPL, RUNX2, BGLAP, SP7, FOS, IL6, PTGS2, TNF, IL1B, IL8, IL10 and PGE2 were analyzed by RT-qPCR and/or enzyme-linked immunosorbent assay (ELISA). ALPL and RUNX2 both peaked after 1 day, reaching their maximum at 3%, whereas BGLAP peaked after 3 days with its maximum at 10%. SP7 peaked after 1 day at 6%, 10% and 15%. FOS peaked after 3 days with its maximum at 3%, 6% and 15%. The expressions of IL6 and PTGS2 both peaked after 1 day, with their minimum at 10%. PGE2 peaked after 1 day (maximum at 20%). The ELISA of IL6 peaked after 3 days, with the minimum at 10%. In summary, the lower magnitudes promoted osteogenesis and caused less inflammation, while the higher magnitudes inhibited osteogenesis and enhanced inflammation. Among all magnitudes, 10% generally caused a lower level of inflammation with a higher level of osteogenesis.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Thomas Stocker
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
- Correspondence:
| |
Collapse
|
6
|
Cyclic tensile strain affects the response of human periodontal ligament stromal cells to tumor necrosis factor-α. Clin Oral Investig 2021; 26:609-622. [PMID: 34185172 PMCID: PMC8791913 DOI: 10.1007/s00784-021-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
Objectives Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. Materials and methods hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. Results TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. Conclusions Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. Clinical relevance Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04039-8.
Collapse
|
7
|
Wu X, Li Y, Cao Z, Xie Y, Fu C, Chen H. Mechanism of Cyclic Tensile Stress in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Calcif Tissue Int 2021; 108:640-653. [PMID: 33433643 DOI: 10.1007/s00223-020-00789-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
Human periodontal ligament stem cells (hPDLSCs) can undergo osteogenic differentiation under induction conditions. Cyclic tensile stress (CTS) can stimulate stem cell osteogenic differentiation. The present study explored the mechanism of CTS in hPDLSC osteogenic differentiation. The hPDLSCs of the 4th passage were selected. hPDLSCs were subjected to CTS with deformation of 10% elongation at 0.5 Hz for 1, 4, 8, 12 and 24 h. ALP activity and staining, ARS staining and detection of expressions of osteogenesis-related genes (RUNX2, OPN, Sp7 and OCN) were used to assess hPDLSC osteogenic differentiation ability. microRNA (miR)-129-5p and BMP2 expression and p-Smad1/5 level were detected under CTS stimulation. The binding relationship between miR-129-5p and BMP2 was predicted and verified. The osteogenic differentiation ability of CTS-treated hPDLSCs was evaluated after intervention of miR-129-5p and BMP2. CTS induced hPDLSC osteogenic differentiation, as manifested by increased ALP activities, osteogenesis-related gene expressions and mineralized nodules, together with positive ALP staining. CTS inhibited miR-129-5p expression, and promoted BMP2 expression and p-Smad1/5 level in hPDLSCs. miR-129-5p targeted BMP2. Overexpressed miR-129-5p or silenced BMP2 prevented hPDLSC osteogenic differentiation ability. We demonstrated that CTS inhibited miR-129-5p expression, and then activated the BMP2/Smad pathway, thereby showing stimulative effects on hPDLSC osteogenic differentiation.
Collapse
Affiliation(s)
- Xiayi Wu
- Zhujiang Newtown Dental Clinic, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.49 Huaxia Road, Guangzhou, 510627, Guangdong, People's Republic of China.
| | - Yi Li
- Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Lingyuan West Rd, Guangzhou, 510080, People's Republic of China
| | - Zeyuan Cao
- Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Lingyuan West Rd, Guangzhou, 510080, People's Republic of China
| | - Yunyi Xie
- Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Lingyuan West Rd, Guangzhou, 510080, People's Republic of China
| | - Chuanqiang Fu
- Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Lingyuan West Rd, Guangzhou, 510080, People's Republic of China
| | - Huan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, No.56 Lingyuan West Rd, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
8
|
Li YH, Zhu D, Yang T, Cheng L, Sun J, Tan L. Crosstalk between the COX2-PGE2-EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation. J Cell Physiol 2020; 236:4764-4777. [PMID: 33275302 DOI: 10.1002/jcp.30198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022]
Abstract
Primary cilia have been found to function as mechanosensors in low-magnitude high-frequency vibration (LMHFV)-induced osteogenesis. The PGE2 also regulates bone homeostasis and mechanical osteogenesis through its receptor EP4 signaling, but its involvement in LMHFV-induced or in primary cilia-induced osteogenesis has not been investigated. We hypothesized that LMHFV stimulates osteoblast (OB) differentiation by activating the COX2-PGE2-EP pathway in a manner dependent on primary cilia and that primary cilia are also affected by the PGE2 pathway. In this study, through western blot analysis, RNA interference, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and cytochemical staining, we observed that COX2, mPGES-1, and PGE2 levels were markedly elevated in cells treated with LMHFV and were greatly decreased in LMHFV-treated cells following IFT88 silencing. EP4 expression was significantly increased in OBs following LMHFV treatment, but IFT88 silencing significantly blocked this increase. EP4 localized to the bases of primary cilia. LMHFV reduced the length and abundance of primary cilia, but the cells could self-repair their primary cilia after mechanical damage. EP4 antagonism significantly blocked the LMHFV-induced increase in IFT88 expression and blocked the recovery of primary cilia length and the proportion of cells with primary cilia. In addition, COX2 or EP4 antagonism disrupted LMHFV-induced osteogenesis. These results demonstrate the integration of and crosstalk between primary cilia and the COX2-PGE2-EP4 signaling pathway under mechanical stimulation.
Collapse
Affiliation(s)
- Yan-Hui Li
- Department of Cardiology and Echocardiography, The First Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Tianye Yang
- Department of Plastic and Cosmetic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Long Cheng
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Lei Tan
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
da Silva Madaleno C, Jatzlau J, Knaus P. BMP signalling in a mechanical context - Implications for bone biology. Bone 2020; 137:115416. [PMID: 32422297 DOI: 10.1016/j.bone.2020.115416] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are extracellular multifunctional signalling cytokines and members of the TGFβ super family. These pleiotropic growth factors crucially promote bone formation, remodeling and healing after injury. Additionally, bone homeostasis is systematically regulated by mechanical inputs from the environment, which are incorporated into the bone cells' biochemical response. These inputs range from compression and tension induced by the movement of neighboring muscle, to fluid shear stress induced by interstitial fluid flow in the canaliculi and in the vascular system. Although BMPs are widely applied in a clinic context to promote fracture healing, it is still elusive how mechanical inputs modulate this signalling pathway, hindering an efficient and side-effect free application of these ligands in bone healing. This review aims to summarize the current understanding in how mechanical cues (tension, compression, shear force and hydrostatic pressure) and substrate stiffness modulate BMP signalling. We highlight the time-dependent effects in modulating immediate early up to long-term effects of mechano-BMP crosstalk during bone formation and remodeling, considering the interplay with other already established mechanosensitive pathways, such as MRTF/SRF and Hippo signalling.
Collapse
Affiliation(s)
- Carolina da Silva Madaleno
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Jerome Jatzlau
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
10
|
Jin Y, Ding L, Ding Z, Fu Y, Song Y, Jing Y, Li Q, Zhang J, Ni Y, Hu Q. Tensile force-induced PDGF-BB/PDGFRβ signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement. Sci Rep 2020; 10:11269. [PMID: 32647179 PMCID: PMC7347599 DOI: 10.1038/s41598-020-68068-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Orthodontic force-induced osteogenic differentiation and bone formation at tension side play a pivotal role in orthodontic tooth movement (OTM). Platelet-derived growth factor-BB (PDGF-BB) is a clinically proven growth factor during bone regeneration process with unclear mechanisms. Fibroblasts in periodontal ligament (PDL) are considered to be mechanosensitive under orthodontic force. Thus, we established OTM model to investigate the correlation between PDGF-BB and fibroblasts during bone regeneration at tension side. We confirmed that tensile force stimulated PDL cells to induce osteogenic differentiation via Runx-2, OCN up-regulation, and to accelerate new bone deposition along the periodontium and the alveolar bone interface. Interestingly, PDGF-BB level was remarkably enhanced at tension side during OTM in parallel with up-regulated PDGFRβ+/α-SMA+ fibroblasts in PDL by immunohistochemistry. Moreover, orthodontic force-treated primary fibroblasts from PDL were isolated and, cultured in vitro, which showed similar morphology and phenotype with control fibroblasts without OTM treatment. PDGFRβ expression was confirmed to be increased in orthodontic force-treated fibroblasts by immunofluorescence and flow cytometry. Bioinformatics analysis identified that PDGF-BB/PDGFRβ signals were relevant to the activation of JAK/STAT3 signals. The protein expression of JAK2 and STAT3 was elevated in PDL of tension side. Importantly, in vivo, the treatment of the inhibitors (imatinib and AG490) for PDGFRβ and JAK-STAT signals were capable of attenuating the tooth movement. The osteogenic differentiation and bone regeneration in tension side were down-regulated upon the treatment of inhibitors during OTM. Meanwhile, the expressions of PDGFRβ, JAK2 and STAT3 were inhibited by imatinib and AG490. Thus, we concluded that tensile force-induced PDGF-BB activated JAK2/STAT3 signals in PDGFRβ+ fibroblasts in bone formation during OTM.
Collapse
Affiliation(s)
- Yuqin Jin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhuang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Yong Fu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiang Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Jianyun Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China.
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
11
|
Wang Y, Du C, Wan W, He C, Wu S, Wang T, Wang F, Zou R. shRNA knockdown of integrin-linked kinase on hPDLCs migration, proliferation, and apoptosis under cyclic tensile stress. Oral Dis 2020; 26:1747-1754. [PMID: 32531841 DOI: 10.1111/odi.13474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the roles of integrin-linked kinase (ILK) in mediating the cell migration, proliferation, and apoptosis of human periodontal ligament cells (hPDLCs) in response to cyclic tensile stress. METHODS Primary hPDLCs were obtained through the enzyme digestion and tissue culture method. Short hairpin ILK-expressing hPDLCs were constructed using a recombinant lentiviral vector that specifically targeted ILK gene expression. The silencing of the ILK gene was identified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The hPDLCs were seeded on a flexible substrate and loaded with cyclic tensile stress at 0.5 Hz for 0, 2, 4, and 8 hr, consecutively, with the Flexcell Tension System. The response of cell migration was tested by the scratch assay. Cell proliferation was characterized by optical density (OD) value of cell counting kit-8 (CCK-8) test and Ki67 mRNA expression of qRT-PCR. Cell apoptosis was determined by flow cytometry and Caspase-3 mRNA expression of qRT-PCR. RESULTS Knocking down ILK substantially reduces migration and proliferation as well as regulates the sensitivity of hPDLCs to apoptosis under cyclic tensile stress. CONCLUSIONS ILK can promote the proliferation and migration as well as inhibit apoptosis of hPDLCs under cyclic tensile stress.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | | | - Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chuan He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shiyang Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tairan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Hanata N, Shoda H, Hatano H, Nagafuchi Y, Komai T, Okamura T, Suzuki A, Gunarta IK, Yoshioka K, Yamamoto K, Fujio K. Peptidylarginine Deiminase 4 Promotes the Renal Infiltration of Neutrophils and Exacerbates the TLR7 Agonist-Induced Lupus Mice. Front Immunol 2020; 11:1095. [PMID: 32655553 PMCID: PMC7324481 DOI: 10.3389/fimmu.2020.01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4), encoded by PADI4, plays critical roles in the immune system; however, its contribution to the pathogenesis of lupus nephritis remains controversial. The pathological roles of PAD4 were investigated in lupus model mice. An imiquimod (IMQ)-induced lupus model was analyzed in wild-type (WT) and Padi4-knockout (KO) mice. Proteinuria, serum anti-double stranded DNA (anti-dsDNA) antibody, and renal infiltrated cells were evaluated. Neutrophil migration and adhesion were assessed using adoptive transfer and adhesion assay. PAD4-regulated pathways were identified by RNA-sequencing of Padi4 KO neutrophils. Padi4 KO mice exhibited significant improvements in proteinuria progression compared with WT mice, whereas, serum anti-dsDNA antibody and immune complex deposition in the glomeruli showed no difference between both mice strains. Padi4 KO mice showed decreased neutrophil infiltration in the kidneys. Adoptively transferred Padi4 KO neutrophils showed decreased migration to the kidneys of IMQ-treated WT mice, and adhesion to ICAM-1 was impaired in Padi4 KO neutrophils. Padi4 KO neutrophils exhibited reduced upregulation of p38 mitogen-activated protein kinase (MAPK) pathways. Toll-like receptor 7 (TLR7)-primed Padi4 KO neutrophils demonstrated reduced phosphorylation of p38 MAPK and lower expression of JNK-associated leucine zipper protein (JLP), a p38 MAPK scaffold protein. Neutrophils from heterozygous Jlp KO mice showed impaired adhesion to ICAM-1 and decreased migration to the kidneys of IMQ-treated WT mice. These results indicated a pivotal role of PAD4-p38 MAPK pathway in renal neutrophil infiltration in TLR7 agonist-induced lupus nephritis, and the importance of neutrophil-mediated kidney inflammation. Inhibition of the PAD4-p38 MAPK pathway may help in formulating a novel therapeutic strategy against lupus nephritis.
Collapse
Affiliation(s)
- Norio Hanata
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Jiang HT, Ran CC, Liao YP, Zhu JH, Wang H, Deng R, Nie M, He BC, Deng ZL. IGF-1 reverses the osteogenic inhibitory effect of dexamethasone on BMP9-induced osteogenic differentiation in mouse embryonic fibroblasts via PI3K/AKT/COX-2 pathway. J Steroid Biochem Mol Biol 2019; 191:105363. [PMID: 31018166 DOI: 10.1016/j.jsbmb.2019.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Glucocorticoid-Induced Osteoporosis (GIOP) is a prevalent clinical complication caused by large dose administration of glucocorticoids, such as Dexamethasone (Dex) and Prednisone. GIOP may lead to fractures and even Osteonecrosis of the Femoral Head (ONFH). It has been reported that glucocorticoids inhibit osteogenesis via the suppression of osteogenic differentiation in Mesenchymal Stem Cells (MSCs), but the precise mechanism underlying this suppression awaits further investigation. Meanwhile, novel and efficacious therapies are recommended to cope with GIOP. In this study, we demonstrated that Dex had the inhibitory effect on Bone Morphogenetic Protein 9 (BMP9)-induced ALP activities and matrix mineralization in Mouse Embryonic Fibroblasts (MEFs). In addition, the study confirmed that Dex decreased the expression of osteogenic markers such as Runx2 and OPN. However, the inhibitory effect of Dex on these osteogenic markers can be reversed when combined with insulin-like growth factor 1 (IGF-1). Regarding the inhibitory mechanism, we found that the level of AKT and p-AKT can be decreased by Dex and that Ly294002, the PI3K inhibitor, can block the reversal effect of IGF-1. Moreover, the knockdown or inhibition of COX-2 produced similar results to those of Ly294002. Our findings indicated that IGF-1 may reverse the osteogenic inhibitory effect of Dex via PI3K/AKT pathway, which may be associated with the up-regulation of COX-2. This study may provide new clinical management strategy for GIOP cases.
Collapse
Affiliation(s)
- Hai-Tao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China
| | - Cheng-Cheng Ran
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China
| | - Yun-Peng Liao
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China
| | - Jia-Hui Zhu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China
| | - Han Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China
| | - Rui Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Mao Nie
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Bai-Cheng He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, PR China
| | - Zhong-Liang Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| |
Collapse
|
14
|
Wang Z, Maruyama K, Sakisaka Y, Suzuki S, Tada H, Suto M, Saito M, Yamada S, Nemoto E. Cyclic Stretch Force Induces Periodontal Ligament Cells to Secrete Exosomes That Suppress IL-1β Production Through the Inhibition of the NF-κB Signaling Pathway in Macrophages. Front Immunol 2019; 10:1310. [PMID: 31281309 PMCID: PMC6595474 DOI: 10.3389/fimmu.2019.01310] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
In the oral mechanical environment, periodontal ligament cells (PDL cells) contribute to maintaining periodontal tissue homeostasis. Recent studies showed that exosomes, which are small vesicles secreted by various types of cells, play a pivotal role in cell-to-cell communication in biological processes. We examined the secretion of exosomes from PDL cells stimulated with cyclic stretch and their role in the inflammatory response of macrophages using the human macrophage cell line THP-1 and human primary monocytes/macrophages. We prepared supernatants from human PDL cells (PDL-sup) stimulated with cyclic stretch. The treatment of macrophages with PDL-sup, but not PDL-sup from unstimulated PDL cells, inhibited the production of IL-1β in LPS/nigericin-stimulated macrophages. The pretreatment of PDL cells with GW4869, an inhibitor of exosome secretion, or siRNA for Rab27B, which controls exosome secretion, abrogated the inhibitory effects of PDL-sup. A transmission electron microscopy analysis demonstrated the existence of exosomes with diameters ranging between 30 and 100 nm in PDL-sup, suggesting that exosomes in PDL-sup contribute to this inhibition. An immunofluorescence microscopy analysis revealed that exosomes labeled with PKH67, a fluorescent dye, were incorporated by macrophages as early as 2 h after the addition of exosomes. Purified exosomes inhibited IL-1β production in LPS/nigericin-stimulated macrophages and the nuclear translocation of NF-κB as well as NF-κB p65 DNA-binding activity in LPS-stimulated macrophages, suggesting that exosomes suppress IL-1β production by inhibiting the NF-κB signaling pathway. Our results indicate that PDL cells in mechanical environments contribute to the maintenance of periodontal immune/inflammatory homeostasis by releasing exosomes.
Collapse
Affiliation(s)
- Zhuyu Wang
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentarou Maruyama
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukihiko Sakisaka
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Tada
- Department of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mizuki Suto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
15
|
Wu Q, Li J, Song P, Chen J, Xu Y, Qi S, Ma J, Pan Q. Knockdown of NRAGE induces odontogenic differentiation by activating NF-κB signaling in mouse odontoblast-like cells. Connect Tissue Res 2019; 60:71-84. [PMID: 29448842 DOI: 10.1080/03008207.2018.1439484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Neurotrophin receptor-interacting MAGE homologue (Nrage) plays an important role in bone development and the metabolism of normal skeletal structures. Our previous study showed that Nrage inhibited the odontogenic differentiation of mouse dental pulp cells. However, the potential roles and mechanism of Nrage in regulating odontogenic differentiation are unknown. The aim of this study was to investigate the molecular mechanism of Nrage in odontogenic differentiation of mouse odontoblast-like cells. MATERIALS AND METHODS Endogenous expression of Nrage was stably downregulated by lentivirus-mediated shRNA. Mineralized nodules formation was detected by alizarin red S staining. Dmp-1, Dspp, and ALP mRNA and protein levels were detected by qRT-PCR and western blotting, respectively. In addition, ALPase activity was detected. Confocal microscopy and co-immunoprecipitation (co-IP) were used to analyze the interactions between NRAGE and NF-κB signaling molecules. An IKK inhibitor was also used in the study. RESULTS NRAGE expression in odontoblasts was downregulated during mouse first maxillary molar development. Moreover, NRAGE expression was downregulated during odontogenic differentiation of odontoblast-like cells. NRAGE knockdown significantly upregulated DMP1 and DSP expression, increased ALPase activity, and promoted mineralized nodule formation. In addition, NRAGE knockdown increased the translocation of NF-κB1 to the nucleus and phosphorylation levels of p65. Co-IP results showed that NRAGE bound to IKKβ. Most importantly, the promoting effect of Nrage knockdown on odontoblastic differentiation was reduced after treatment with an IKK inhibitor. CONCLUSIONS Our data confirmed that NRAGE is an important regulator of odontogenic differentiation of odontoblasts by inhibiting the NF-κB signaling pathway through binding to IKKβ. ABBREVIATIONS Nrage: neurotrophin receptor-interacting MAGE homologue; DSP: dentin sialophospho protein; DMP-1: dentin matrix protein-1; BMP: bone morphogenetic protein; Wnt: wingless; NF-κB: nuclear factor of activated B cells; DAPI: 4',6-diamidino-2-phenylindole; KO: knockout; DPCs: dental pulp cells; AA: ascorbic acid; β-Gly: β-glycerophosphate; Dex: dexamethasone; co-IP: co-immunoprecipitation; IκB: inhibitor of NF-κB; IKK: IκB kinase.
Collapse
Affiliation(s)
- Qi Wu
- a Department of Clinical Laboratory , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China.,b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jing Li
- c Department of Clinical Laboratory , Maternal and Child Health Care of Zaozhuang , Shandong , P. R. China
| | - Pingping Song
- d Department of Clinical Laboratory , Liaocheng People's Hospital , Liaocheng , China
| | - Jing Chen
- e Department of Clinical Laboratory , Luoyang Orthopedic Hospital , Luoyang , Henan , P. R. China
| | - Yuanzhi Xu
- f Department of Stomatology , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Shengcai Qi
- f Department of Stomatology , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Ji Ma
- b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China.,g Central Laboratory , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Qiuhui Pan
- b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
16
|
Maruyama K, Nemoto E, Yamada S. Mechanical regulation of macrophage function - cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1β secretion in murine macrophages. Inflamm Regen 2019; 39:3. [PMID: 30774738 PMCID: PMC6367847 DOI: 10.1186/s41232-019-0092-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Mechanical stress maintains tissue homeostasis by regulating many cellular functions including cell proliferation, differentiation, and inflammation and immune responses. In inflammatory microenvironments, macrophages in mechanosensitive tissues receive mechanical signals that regulate various cellular functions and inflammatory responses. Macrophage function is affected by several types of mechanical stress, but the mechanisms by which mechanical signals influence macrophage function in inflammation, such as the regulation of interleukin-1β by inflammasomes, remain unclear. In this review, we describe the role of mechanical stress in macrophage and monocyte cell function.
Collapse
Affiliation(s)
- Kentaro Maruyama
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
17
|
Tantilertanant Y, Niyompanich J, Everts V, Supaphol P, Pavasant P, Sanchavanakit N. Cyclic tensile force stimulates BMP9 synthesis and in vitro mineralization by human periodontal ligament cells. J Cell Physiol 2018; 234:4528-4539. [PMID: 30206934 DOI: 10.1002/jcp.27257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs. It is yet unknown whether CTF affects the expression of BMP9 and mineralization. Here, we demonstrated that continuously applied CTF for only the first 6 hr stimulated the synthesis of BMP9 and induced mineral deposition within 14 days by human PDL cells. Stimulation of BMP9 expression depended on ATP and P2Y 1 receptors. Apyrase, an ecto-ATPase, inhibited CTF-mediated ATP-induced BMP9 expression. The addition of ATP increased the expression of BMP9. Loss of function experiments using suramin (a broad-spectrum P2Y antagonist), MRS2179 (a specific P2Y 1 receptor antagonist), MRS 2365 (a specific P2Y 1 agonist), U-73122 (a phospholipase C [PLC] inhibitor), and thapsigargin (enhancer of intracytosolic calcium) revealed the participation of P2Y 1 in regulating the expression of BMP9. This was mediated by an increased level of intracellular Ca 2+ through the PLC pathway. A neutralizing anti-BMP9 antibody decreased mineral deposition, which was stimulated by CTF for almost 45% indicating a role of BMP9 in an in vitro mineralization. Collectively, our findings suggest an essential modulatory role of CTF in the homeostasis and regeneration of the periodontium.
Collapse
Affiliation(s)
- Yanee Tantilertanant
- Department of Anatomy and Research Unit of Mineralized Tissues, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jitti Niyompanich
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pitt Supaphol
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Department of Anatomy and Research Unit of Mineralized Tissues, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Neeracha Sanchavanakit
- Department of Anatomy and Research Unit of Mineralized Tissues, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Liu C, Gao J, Chen B, Chen L, Belguise K, Yu W, Lu K, Wang X, Yi B. Cyclooxygenase-2 promotes pulmonary intravascular macrophage accumulation by exacerbating BMP signaling in rat experimental hepatopulmonary syndrome. Biochem Pharmacol 2017. [PMID: 28642034 DOI: 10.1016/j.bcp.2017.06.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS One central factor in hepatopulmonary syndrome (HPS) pathogenesis is intravascular accumulation of activated macrophages in small pulmonary arteries. However, molecular mechanism underlying the macrophage accumulation in HPS is unknown. In this study, we aimed to explore whether elevated COX-2 induces the Bone morphogenic protein-2 (BMP-2)/Crossveinless-2 (CV-2) imbalance and then activation of BMP signaling pathway promotes the macrophage accumulation in Common Bile Duct Ligation (CBDL) rat lung. METHODS The COX-2/PGE2 signaling activation, the BMP-2/CV-2 imbalance and the activation of Smad1 were evaluated in CBDL rat lung and in cultured pulmonary microvascular endothelial cells (PMVECs) under the HPS serum stimulation. The effects of Parecoxib (COX-2 inhibitor), BMP-2 and CV-2 recombinant proteins on 4-week CBDL rat lung were determined, respectively. RESULTS The COX-2/PGE2 signaling pathway was activated in CBDL rat lung in vivo and PMVECs in vitro, which was due to the activation of NF-κB P65. The inhibition of COX-2 by Parecoxib reduced macrophage accumulation, decreased lung angiogenesis and improved HPS. Meanwhile, the CBDL rat lung secreted more BMP-2 but less CV-2, and the imbalance between BMP-2 and CV-2 exacerbated the BMP signaling activation thus promoting the macrophage accumulation and lung angiogenesis. The BMP-2/CV-2 imbalance is dependent on the COX-2/PGE2 signaling pathway, and thus the effects of this imbalance can be reversed by adminstration of Parecoxib. CONCLUSION Our findings indicate that inhibition of COX-2 by parecoxib can improve the HPS through the repression of BMP signaling and macrophage accumulation.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing Gao
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Bing Chen
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Lin Chen
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Karine Belguise
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Weifeng Yu
- Department of Anesthesia, RenJi Hospital, The Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xiaobo Wang
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China; LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
19
|
Wada S, Kanzaki H, Narimiya T, Nakamura Y. Novel device for application of continuous mechanical tensile strain to mammalian cells. Biol Open 2017; 6:518-524. [PMID: 28302667 PMCID: PMC5399557 DOI: 10.1242/bio.023671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During orthodontic tooth movement, the periodontal ligament (PDL) is exposed to continuous mechanical strain. However, many researchers have applied cyclic tensile strain, not continuous tensile strain, to PDL cells in vitro because there has been no adequate device to apply continuous tensile strain to cultured cells. In this study, we contrived a novel device designed to apply continuous tensile strain to cells in culture. The continuous tensile strain was applied to human immortalized periodontal ligament cell line (HPL cells) and the cytoskeletal structures of HPL cells were examined by immunohistochemistry. The expression of both inflammatory and osteogenic markers was also examined by real-time reverse transcription polymerase chain reaction. The osteogenic protein, Osteopontin (OPN), was also detected by western blot analysis. The actin filaments of HPL cells showed uniform arrangement under continuous tensile strain. The continuous tensile strain increased the expression of inflammatory genes such as IL-1β, IL-6, COX-2 and TNF-α, and osteogenic genes such as RUNX2 and OPN in HPL cells. It also elevated the expression of OPN protein in HPL cells. These results suggest that our new simple device is useful for exploring the responses to continuous tensile strain applied to the cells. Summary: Continuous tensile strain from the device changed the cell morphology and increased the expression of inflammatory and osteogenic gene. These effects were similar to those in the PDL during orthodontic tooth movement.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
20
|
Barcia JM, Portolés S, Portolés L, Urdaneta AC, Ausina V, Pérez-Pastor GMA, Romero FJ, Villar VM. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome? Front Physiol 2017; 8:22. [PMID: 28179886 PMCID: PMC5263147 DOI: 10.3389/fphys.2017.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.
Collapse
Affiliation(s)
- Jorge M. Barcia
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Sandra Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Laura Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Alba C. Urdaneta
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Verónica Ausina
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Gema M. A. Pérez-Pastor
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Francisco J. Romero
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Vincent M. Villar
- Department of Biomedical Sciences, Universidad Cardenal Herrera, CEUMoncada, Spain
| |
Collapse
|
21
|
Wang L, Hu H, Cheng Y, Chen J, Bao C, Zou S, Wu G. Screening the Expression Changes in MicroRNAs and Their Target Genes in Mature Cementoblasts Stimulated with Cyclic Tensile Stress. Int J Mol Sci 2016; 17:ijms17122024. [PMID: 27941605 PMCID: PMC5187824 DOI: 10.3390/ijms17122024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the extent to which a post-transcriptional modulation mechanism is involved in this process has rarely been reported. In this study, a mature murine cementoblast cell line OCCM-30 cells (immortalized osteocalcin positive cementoblasts) was cultured and subjected to cyclic tensile stress (0.5 Hz, 2000 µstrain). We showed that the cyclic tensile stress could not only rearrange the cell alignment, but also influence the proliferation in an S-shaped manner. Furthermore, cyclic tensile stress could significantly promote cementoblastogenesis-related genes, proteins and mineralized nodules. From the miRNA array analyses, we found that 60 and 103 miRNAs were significantly altered 6 and 18 h after the stimulation using cyclic tensile stress, respectively. Based on a literature review and bioinformatics analyses, we found that miR-146b-5p and its target gene Smad4 play an important role in this procedure. The upregulation of miR-146b-5p and downregulation of Smad4 induced by the tensile stress were further confirmed by qRT-PCR. The direct binding of miR-146b-5p to the three prime untranslated region (3' UTR) of Smad4 was established using a dual-luciferase reporter assay. Taken together, these results suggest an important involvement of miR-146b-5p and its target gene Smad4 in the cementoblastogenesis of mature cementoblasts.
Collapse
Affiliation(s)
- Liao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Haikun Hu
- China Dental Implantology Center, West China Dental Implantology Hospital, Sichuan University, No. 75 Xiaotianzhu Street, Chengdu 610041, China.
| | - Ye Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam and University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081LA Amsterdam, The Netherlands.
| |
Collapse
|
22
|
LOPES ACTDA, TÉO MAQ, CORRÊA MG, ISHIKIRIAMA BLC, CAMPOS MLG. Evaluation of bone loss due to primary occlusal trauma in two experimental models of occlusal overload. REVISTA DE ODONTOLOGIA DA UNESP 2016. [DOI: 10.1590/1807-2577.27815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract Introduction Primary occlusal trauma (OT) is an injury of the periodontium with normal height as a result of occlusal forces which exceed their adaptive capacity. Objective To evaluate, histometrically, the alveolar bone loss in the furcation region of rats experimentally submitted to 2 models of occlusal overload. Material and method 45 animals randomly divided into 3 groups: Occlusal Interference (OI, n = 15) - fixing an orthodontic wire segment on the occlusal surface of the first lower molar; Occlusal Overload (OO, n = 15) - wearing of the cusps of the lower contralateral molars, the second and third molars next to the first molar that had its dimensions maintained; Negative Control (NC, n = 15) - evaluation of the initial dimensions of the periodontal ligament (PL). Five animals / group were sacrificed after 14, 21 and 28 days. Result Intergroup evaluation showed significant bone loss in OI (p<0.001) and OO (p<0.01) compared to NC. OI had significantly higher bone loss compared to OO at 14 (p<0.01), 21 (p <0.01) and 28 days (p<0.01). The intragroup evaluation showed no significant influence of time on bone loss in OI and OO, regardless of the technique used (p>0.05). The thickness of the PL remained stable in NC (p>0.05). Conclusion OI and OO were effective in the experimental reproduction of OT, and OI promoted greater alveolar bone loss compared to OO, showing that the impact of occlusal overload in OI increased the extent of the OT injury.
Collapse
|
23
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
24
|
Cyclic tensile stress of human annulus fibrosus cells induces MAPK activation: involvement in proinflammatory gene expression. Osteoarthritis Cartilage 2016; 24:679-87. [PMID: 26687822 DOI: 10.1016/j.joca.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To study the role of mitogen-activated protein kinases (MAPKs) in human annulus fibrosus (AF) cells subjected to cyclic tensile stress (CTS). DESIGN An in vitro system for CTS studies was established using AF cultures on fibronectin-coated silicone dishes. MAPK phosphorylation was studied by western analysis, while gene expression was followed by qRT-PCR. DNA synthesis was assessed by both tritiated thymidine incorporation and flow cytometry, and collagen synthesis using tritiated proline incorporation and the protease-free collagenase method. RESULTS All three MAPKs studied, i.e., ERK, SAPK/JNK, and p38 were found to be phosphorylated immediately after CTS application within physiological range. A second wave of phosphorylation appeared at later time points. MAPK activation was elevated at higher CTS magnitudes, but independent of the frequency. CTS did not stimulate DNA synthesis neither extracellular matrix turnover, but it stimulated the proinflammatory genes, COX-2, IL-6, and IL-8. This stimulation was more intense at the highest magnitude (8%) tested and at the median frequency (1 Hz) and time interval (12 h). Blocking of ERK, SAPK/JNK, and p38 MAPK inhibited the CTS-induced stimulation of COX-2 and IL-8, while IL-6 expression was mediated only by SAPK/JNK and p38 MAPK. CONCLUSIONS We have described for the first time the activation of MAPKs in human AF cells in response to CTS and showed that it drives an inflammatory reaction. These observations shed light on the mechanisms of intervertebral disc (IVD) cell responses to mechanical stress, contributing to the understanding of disc pathophysiology and possibly to the design of novel therapeutic interventions.
Collapse
|
25
|
Zheng L, Chen L, Chen Y, Gui J, Li Q, Huang Y, Liu M, Jia X, Song W, Ji J, Gong X, Shi R, Fan Y. The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. J Biomech 2016; 49:572-9. [PMID: 26892895 DOI: 10.1016/j.jbiomech.2016.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/26/2023]
Abstract
Shear stress is one of the main stress type produced by speech, mastication or tooth movement. The mechano-response of human periodontal ligament (PDL) cells by shear stress and the mechanism are largely unknown. In our study, we investigated the effects of fluid shear stress on proliferation, migration and osteogenic potential of human PDL cells. 6dyn/cm(2) of fluid shear stress was produced in a parallel plate flow chamber. Our results demonstrated that fluid shear stress rearranged the orientation of human PDL cells. In addition, fluid shear stress inhibited human PDL cell proliferation and migration, but increased the osteogenic potential and expression of several growth factors and cytokines. Our study suggested that shear stress is involved in homeostasis regulation in human PDL cells. Inhibiting proliferation and migration potentially induce PDL cells to respond to mechanical stimuli in order to undergo osteogenic differentiation.
Collapse
Affiliation(s)
- Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Luoping Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuchao Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jinpeng Gui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, 100081, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaolin Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jing Ji
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ruoshi Shi
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
26
|
Li J, Li H, Tian Y, Yang Y, Chen G, Guo W, Tian W. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells. Exp Cell Res 2015; 345:6-16. [PMID: 26708290 DOI: 10.1016/j.yexcr.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
Human dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) derived from the ectomesenchymal tissue, have been shown to exhibit stem/progenitor cell properties and the ability to induce tissue regeneration. Stem cells in dental follicle differentiate into cementoblasts, periodontal ligament fibroblasts and osteoblasts, these cells form cementum, periodontal ligament and alveolar bone, respectively. While stem cells in dental follicle are a precursor to periodontal ligament fibroblasts, the molecular changes that distinguish cultured DFCs from PDLCs are still unknown. In this study, we have compared the immunophenotypic features and cell cycle status of the two cell lines. The results suggest that DFCs and PDLCs displayed similar features related to immunophenotype and cell cycle. Then we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics strategy to reveal the molecular differences between the two cell types. A total of 2138 proteins were identified and 39 of these proteins were consistently differentially expressed between DFCs and PDLCs. Gene ontology analyses revealed that the protein subsets expressed higher in PDLCs were related to actin binding, cytoskeletal protein binding, and structural constituent of muscle. Upon validation by real-time PCR, western blotting, and immunofluorescence staining. Tropomyosin 1 (TPM1) and caldesmon 1 (CALD1) were expressed higher in PDLCs than in DFCs. Our results suggested that PDLCs display enhanced actin cytoskeletal dynamics relative to DFCs while DFCs may exhibit a more robust antioxidant defense ability relative to PDLCs. This study expands our knowledge of the cultured DFCs and PDLCs proteome and provides new insights into possible mechanisms responsible for the different biological features observed in each cell type.
Collapse
Affiliation(s)
- Jie Li
- College of Life Science, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Sachs F. Mechanical transduction by ion channels: A cautionary tale. World J Neurol 2015; 5:74-87. [PMID: 28078202 PMCID: PMC5221657 DOI: 10.5316/wjn.v5.i3.74] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/23/2014] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual stimulus, the force applied to the channel, is not known. We don’t have direct access to the channels themselves but only to larger regions of the membrane as seen in patches. Cortical forces are shared by the bilayer, the cytoskeleton and the extracellular matrix. How much of an applied stimulus reaches the channel is unknown. Furthermore, many of these channels exist in spatial domains where the forces within a domain are different from forces outside the domain, although we often hope they are proportional. This review is intended to be a guide for new investigators who want to study mechanosensitive ion channels.
Collapse
|
28
|
Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 2015; 5:492-501. [PMID: 26110105 PMCID: PMC4476901 DOI: 10.1016/j.fob.2015.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress in the arthritis joint is involved in generating mediators for inflammation. Oxidative stress-induced expression of Cox-2 was mediated by MAPKs and NF-κB. ROS-induced MAPKs and NF-κB were attenuated by inhibition of MAPKKK TAK1. Inhibition of TAK1 activity resulted in reduced expression of Cox-2 and PGE2. ROS-induced TAK1 activation and Cox-2 expression was inhibited by antioxidants N-acetyl cysteamine and hyaluronic acid.
Oxidative stress within the arthritis joint has been indicated to be involved in generating mediators for tissue degeneration and inflammation. COX-2 is a mediator in inflammatory action, pain and some catabolic reactions in inflamed tissues. Here, we demonstrated a direct relationship between oxidative stress and Cox-2 expression in the bovine synovial fibroblasts. Furthermore, we elucidated a novel mechanism, in which oxidative stress induced phosphorylation of MAPKs and NF-κB through TAK1 activation and resulted in increased Cox-2 and prostaglandin E2 expression. Finally, we demonstrated that ROS-induced Cox-2 expression was inhibited by supplementation of an antioxidant such as N-acetyl cysteamine and hyaluronic acid in vitro and in vivo. From these results, we conclude that oxidative stress is an important factor for generation of Cox-2 in synovial fibroblasts and thus its neutralization may be an effective strategy in palliative therapy for chronic joint diseases.
Collapse
Affiliation(s)
- Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanae Shigi
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|