1
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
2
|
Wu X, Pan J, Yu JJ, Kang J, Hou S, Cheng M, Xu L, Gong L, Li Y. DiDang decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116289. [PMID: 36822344 DOI: 10.1016/j.jep.2023.116289] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE DiDang Decoction (DDD) is a traditional classical prescription that has been used to treat atherosclerosis (AS) and hyperlipidemia (HLP) in China. Nevertheless, the underlying mechanism of DDD remains unclear. AIM OF THE STUDY To validate the mechanism of DDD in AS and HLP based on network pharmacology and in vitro experiments. MATERIALS AND METHODS The chemical components of DDD were obtained from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) database and literature mining, and the disease targets of AS and HLP were obtained from the Gencards, OMIM, and DisGeNET databases. The intersection genes were imported into the STRING database to construct protein-protein interaction (PPI) network, and the DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Combined with the results of KEGG pathway analysis, the HIF-1 signaling pathway was selected for further in vitro experiments. RESULTS The results showed that network pharmacology predicted 112 targets related to DDD treatment of AS and HLP, and the top 10 related pathways are: Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, Chemical carcinogenesis - receptor activation, Pathways in cancer, Proteoglycans in cancer, Fluid shear stress and atherosclerosis, HIF-1 signaling pathway, Alcoholic liver disease, PPAR signaling pathway, and Coronavirus disease-COVID-19. In vitro experiments showed that DDD effectively reduced lipid accumulation in FFA-treated L02 cells; DDD attenuated mitochondrial damage and reduced ROS content; DDD inhibited ferroptosis and apoptosis; DDD up-regulated the expression of HIF-1α, Glutathione Peroxidase 4(GPX4), and Bcl2 proteins, and down-regulated expression of Bax protein. CONCLUSION DDD exerts therapeutic effects on AS and HLP through multiple targets and pathways, and improves mitochondrial function, reduces ROS content, inhibits ferroptosis and apoptosis by activating the HIF-1 signaling pathway, which provides reliable theoretical and experimental support for DDD treatment of AS and HLP.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Jj Jiajia Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Siyi Hou
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China; Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110032, China.
| | - Meijia Cheng
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Lili Xu
- Department of Cardiology, 924 Hospital of Joint Logistic Support Force of PLA, Guilin, 541002, China.
| | - Lihong Gong
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China; Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110032, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China; Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110032, China.
| |
Collapse
|
3
|
Yao J, Liu J, He Y, Liu L, Xu Z, Lin X, Liu N, Kai G. Systems pharmacology reveals the mechanism of Astragaloside IV in improving immune activity on cyclophosphamide-induced immunosuppressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116533. [PMID: 37100262 DOI: 10.1016/j.jep.2023.116533] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myelosuppression, also known as bone marrow suppression (BMS), is a pathological phenomenon of the decrease in the production of blood cells and further lead to immune homeostasis disorder. Astragalus mongholicus Bunge (AM, checked with The World Flora Online, http://www.worldfloraonline.org, updated on January 30, 2023) is a traditional Chinese medicine with efficacy of tonifying Qi and strengthening body immunity in thousands of years of clinical practice in China. Astragaloside IV (AS-IV) is a major active ingredient of AM, which plays an important role in regulating immune system through different ways. AIM OF THE STUDY This study was aimed to investigate the protective effect and mechanism of AS-IV on macrophages in vitro and cyclophosphamide (CTX)-induced immunosuppressive mice in vivo, and to provide experimental basis for the prevention and treatment of AS-IV in myelosuppression. MATERIALS AND METHODS Based on network pharmacology and molecular docking technology, the core targets and signaling pathways of saponins of AM against myelosuppression were screened. And then, the immunoregulatory effect of AS-IV on RAW264.7 cells was investigated by cellular immune activity and cellular secretion analysis in vitro. In this way, the effects of AS-IV on the main potential targets of HIF-1α/NF-κB signaling pathway were analyzed by qRT-PCR and Western blot methods. Furthermore, comprehensive analysis of the effects of AS-IV against CTX-induced mice were conducted on the basis of immune organs indices analysis, histopathological analysis, hematological analysis, natural killer cell activity analysis and spleen lymphocyte transformation activity analysis. In order to further verify the relationship between active ingredients and action targets, drug inhibitor experiments were finally conducted. RESULTS AS-IV, as a potential anti-myelosuppressive compound, was screened by systematic pharmacological methods to act on target genes including HIF1A and RELA together with the HIF-1α/NF-κB signaling pathway. Further studies by molecular docking technology showed that AS-IV had good binding activity with HIF1A, RELA, TNF, IL6, IL1B and other core targets. Besides, cellular and animal experiments validation results showed that AS-IV could enhance the migration and phagocytosis of RAW264.7 cells, and protect the immune organs such as spleen and thymus together with bone tissues from damage. By this means, immune cell function including spleen natural killer cell and lymphocyte transformation activity were also enhanced. In addition, white blood cells, red blood cells, hemoglobin, platelets and bone marrow cells were also significantly improved in the suppressed bone marrow microenvironment (BMM). In kinetic experiments, the secretion of cytokines such as TNF-α, IL-6 and IL-1β were increased, and IL-10, TGF-β1 were decreased. The key regulatory proteins such as HIF-1α, NF-κB, PHD3 in HIF-1α/NF-κB signaling pathway were also regulated in the results of upregulated expression of HIF-1α, p-NF-κB p65 and PHD3 at the protein or mRNA level. Finally, the inhibition experiment results suggested that AS-IV could significantly improve protein response in immunity and inflammation such as HIF-1α, NF-κB and PHD3. CONCLUSION AS-IV could significantly relieve CTX-induced immunosuppressive and might improve the immune activity of macrophages by activating HIF-1α/NF-κB signaling pathway, and provide a reliable basis for the clinical application of AS-IV as a potentially valuable regulator of BMM.
Collapse
Affiliation(s)
- Jiaxiong Yao
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Junqiu Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yining He
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Liu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zonghui Xu
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xianming Lin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Na Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, Jinhua Academy, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
4
|
Cheng F, Wang Z, You G, Liu Y, He J, Yang J. Osteocyte-derived exosomes confer multiple myeloma resistance to chemotherapy through acquisition of cancer stem cell-like features. Leukemia 2023:10.1038/s41375-023-01896-y. [PMID: 37045984 DOI: 10.1038/s41375-023-01896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Feifei Cheng
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Zhiming Wang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Gichun You
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yuhong Liu
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Jin He
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Jing Yang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Metabolic Alterations in Multiple Myeloma: From Oncogenesis to Proteasome Inhibitor Resistance. Cancers (Basel) 2023; 15:cancers15061682. [PMID: 36980568 PMCID: PMC10046772 DOI: 10.3390/cancers15061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Despite significant improvements in treatment strategies over the past couple of decades, multiple myeloma (MM) remains an incurable disease due to the development of drug resistance. Metabolic reprogramming is a key feature of cancer cells, including MM, and acts to fuel increased proliferation, create a permissive tumour microenvironment, and promote drug resistance. This review presents an overview of the key metabolic adaptations that occur in MM pathogenesis and in the development of resistance to proteasome inhibitors, the backbone of current MM therapy, and considers the potential for therapeutic targeting of key metabolic pathways to improve outcomes.
Collapse
|
6
|
Schäfer AL, Ruiz-Aparicio PF, Kraemer AN, Chevalier N. Crosstalk in the diseased plasma cell niche - the force of inflammation. Front Immunol 2023; 14:1120398. [PMID: 36895566 PMCID: PMC9989665 DOI: 10.3389/fimmu.2023.1120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Affiliation(s)
- Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paola Fernanda Ruiz-Aparicio
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Antoine N Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Action Sites and Clinical Application of HIF-1α Inhibitors. Molecules 2022; 27:molecules27113426. [PMID: 35684364 PMCID: PMC9182161 DOI: 10.3390/molecules27113426] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases.
Collapse
|
8
|
Exosomal circ-CACNG2 promotes cardiomyocyte apoptosis in multiple myeloma via modulating miR-197-3p/caspase3 axis. Exp Cell Res 2022; 417:113229. [DOI: 10.1016/j.yexcr.2022.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
9
|
Sui C, Zilberberg J, Lee W. Microfluidic device engineered to study the trafficking of multiple myeloma cancer cells through the sinusoidal niche of bone marrow. Sci Rep 2022; 12:1439. [PMID: 35087109 PMCID: PMC8795452 DOI: 10.1038/s41598-022-05520-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple myeloma (MM) is an incurable B cell malignancy characterized by the accumulation of monoclonal abnormal plasma cells in the bone marrow (BM). It has been a significant challenge to study the spatiotemporal interactions of MM cancer cells with the embedded microenvironments of BM. Here we report a microfluidic device which was designed to mimic several physiological features of the BM niche: (1) sinusoidal circulation, (2) sinusoidal endothelium, and (3) stroma. The endothelial and stromal compartments were constructed and used to demonstrate the device's utility by spatiotemporally characterizing the CXCL12-mediated egression of MM cells from the BM stroma and its effects on the barrier function of endothelial cells (ECs). We found that the egression of MM cells resulted in less organized and loosely connected ECs, the widening of EC junction pores, and increased permeability through ECs, but without significantly affecting the number density of viable ECs. The results suggest that the device can be used to study the physical and secreted factors determining the trafficking of cancer cells through BM. The sinusoidal flow feature of the device provides an integral element for further creating systemic models of cancers that reside or metastasize to the BM niche.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Jenny Zilberberg
- Hackensack Meridian Health, Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA. .,Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, NJ, 07030, USA.
| |
Collapse
|
10
|
Zhang Y, Pisano M, Li N, Tan G, Sun F, Cheng Y, Zhang Y, Cui X. Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related peripheral neuropathy. Cell Signal 2020; 78:109872. [PMID: 33290841 DOI: 10.1016/j.cellsig.2020.109872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Peripheral neuropathy (PN) is an incurable complication of multiple myeloma (MM) which adversely affects patients' quality of life. The important roles that Circular RNAs (circRNAs) play in tumor progression, and exosome-mediated intracellular communication has been recognized as a crucial factor in the pathogenesis of MM. However, the role of exosome-derived circRNAs (exo-circRNAs) in MM and MM-induced PN remains elusive. In this study, we aimed to investigate the correlation between serum exo-circRNAs and MM to preliminarily explore the role of exo-circRNAs in MM-related PN. A cohort of 25 MM patients and 5 healthy control (HC) individuals were enrolled in the study. High-throughput sequencing and qRT PCR validation of serum exo-circRNAs were used to generate the aberrantly expressed exo-circRNAs profiles. Bioinformatics analysis was done using GO, KEGG, miRanda, Targetscan and Metascape. Correlation analysis was conducted between chr2:2744228-2,744,407+ and clinical characteristics of PN. ROC curve, univariate and multivariate COX regression models were conducted to identify the prognostic potential of chr2:2744228-2,744,407+ in the MM-related PN. 265 upregulated circRNAs and 787 downregulated circRNAs, with at least a two-fold difference in expression level in MM patients vs HC, were screened. Bioinformatics analysis indicated that upregulated circRNAs had the potential to facilitate MM-related PN. Furthermore, PCR validated the abundant expression of chr2:2744228-2,744,407+ in the serum exosomes of 25 MM patients. Bioinformatics analysis indicated that chr2:2744228-2,744,407+ might induce MM related PN via the downstream miRNA and GRIN2B axis. Overexpressed chr2:2744228-2,744,407+ in the serum exosomes of MM patients might lead to the downregulation of hsa-miR-6829-3p, elevation of GRIN2B in the serum and PC12 cells, and inhibited cell viability. The correlation analysis indicated that the expression of chr 2:2744228-2,744,407+ was positively correlated with the clinical characteristics of PN. ROC curve, univariate and multivariate COX regression analysis identified that chr2:2744228-2,744,407+ is an independent prognostic factor in the MM related PN. We identified that the abnormal expression of the serum exo-circRNA was correlated with MM-related PN, implying that exo-circRNA has potential as a novel therapeutic target for MM related PN.
Collapse
Affiliation(s)
- Yanyu Zhang
- Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Michael Pisano
- Interdisciplinary Program in Immunology, The University of Iowa, 108 Calvin Hall, Iowa City, IA 52242-1396, USA.
| | - Nianhu Li
- Department of Orthopedic, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Guoqing Tan
- Department of Orthopedic, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Fumou Sun
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, MFRC 6033, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Yan Cheng
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, MFRC 6033, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Yanyan Zhang
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| |
Collapse
|
11
|
Kocemba-Pilarczyk KA, Trojan S, Ostrowska B, Lasota M, Dudzik P, Kusior D, Kot M. Influence of metformin on HIF-1 pathway in multiple myeloma. Pharmacol Rep 2020; 72:1407-1417. [PMID: 32715434 PMCID: PMC7550387 DOI: 10.1007/s43440-020-00142-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is defined as plasma cells malignancy, developing in the bone marrow. At the beginning of the disease, the malignant plasma cells are dependent on bone marrow microenvironment, providing growth and survival factors. Importantly, the recent studies pointed hypoxia as an important factor promoting progression of MM. In particular, hypoxia-triggered HIF-1 signaling was shown to promote chemoresistance, angiogenesis, invasiveness and induction of immature phenotype, suggesting that strategies targeting HIF-1 may contribute to improvement of anti-myeloma therapies. METHODS The Western Blot and RT-PCR techniques were applied to analyze the influence of metformin on HIF-1 pathway in MM cells. To evaluate the effect of metformin on the growth of MM cell lines in normoxic and hypoxic conditions the MTT assay was used. The apoptosis induction in metformin treated hypoxic and normoxic cells was verified by Annexin V/PI staining followed by FACS analysis. RESULTS Our results showed, for the first time, that metformin inhibits HIF-1 signaling in MM cells. Moreover, we demonstrated the effect of metformin to be mainly oxygen dependent, since the HIF-1 pathway was not significantly affected by metformin in anoxic conditions as well as after application of hypoxic mimicking compound, CoCl2. Our data also revealed that metformin triggers the growth arrest without inducing apoptosis in either normoxic or hypoxic conditions. CONCLUSIONS Taken together, our study indicates metformin as a promising candidate for developing new treatment strategies exploiting HIF-1 signaling inhibition to enhance the overall anti-MM effect of currently used therapies, that may considerably benefit MM patients.
Collapse
Affiliation(s)
- Kinga A Kocemba-Pilarczyk
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Sonia Trojan
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Barbara Ostrowska
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Małgorzata Lasota
- Department of Transplantation, Jagiellonian University Medical College, Kraków, Poland
| | - Paulina Dudzik
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Kusior
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Marta Kot
- Department of Transplantation, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
12
|
Ria R, Vacca A. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21020613. [PMID: 31963513 PMCID: PMC7013615 DOI: 10.3390/ijms21020613] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma is a B-cell lineage cancer in which neoplastic plasma cells expand in the bone marrow and pathophysiological interactions with components of microenvironment influence many biological aspects of the malignant phenotype, including apoptosis, survival, proliferation, and invasion. Despite the therapeutic progress achieved in the last two decades with the introduction of a more effective and safe new class of drugs (i.e., immunomodulators, proteasome inhibitors, monoclonal antibodies), there is improvement in patient survival, and multiple myeloma (MM) remains a non-curable disease. The bone marrow microenvironment is a complex structure composed of cells, extracellular matrix (ECM) proteins, and cytokines, in which tumor plasma cells home and expand. The role of the bone marrow (BM) microenvironment is fundamental during MM disease progression because modification induced by tumor plasma cells is crucial for composing a "permissive" environment that supports MM plasma cells proliferation, migration, survival, and drug resistance. The "activated phenotype" of the microenvironment of multiple myeloma is functional to plasma cell proliferation and spreading and to plasma cell drug resistance. Plasma cell drug resistance induced by bone marrow stromal cells is mediated by stress-managing pathways, autophagy, transcriptional rewiring, and non-coding RNAs dysregulation. These processes represent novel targets for the ever-increasing anti-MM therapeutic armamentarium.
Collapse
Affiliation(s)
- Roberto Ria
- Correspondence: ; Tel.: +39-080-559-31-06; Fax: +39-080-559-38-04
| | | |
Collapse
|
13
|
Bosseler M, Marani V, Broukou A, Lequeux A, Kaoma T, Schlesser V, François JH, Palissot V, Berchem GJ, Aouali N, Janji B. Inhibition of HIF1α-Dependent Upregulation of Phospho-l-Plastin Resensitizes Multiple Myeloma Cells to Frontline Therapy. Int J Mol Sci 2018; 19:ijms19061551. [PMID: 29882856 PMCID: PMC6032243 DOI: 10.3390/ijms19061551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 12/18/2022] Open
Abstract
The introduction of novel frontline agents in multiple myeloma (MM), like immunomodulatory drugs and proteasome inhibitors, has improved the overall survival of patients. Yet, MM is still not curable, and drug resistance (DR) remains the main challenge. To improve the understanding of DR in MM, we established a resistant cell line (MOLP8/R). The exploration of DR mechanisms yielded an overexpression of HIF1α, due to impaired proteasome activity of MOLP8/R. We show that MOLP8/R, like other tumor cells, overexpressing HIF1α, have an increased resistance to the immune system. By exploring the main target genes regulated by HIF1α, we could not show an overexpression of these targets in MOLP8/R. We, however, show that MOLP8/R cells display a very high overexpression of LCP1 gene (l-Plastin) controlled by HIF1α, and that this overexpression also exists in MM patient samples. The l-Plastin activity is controlled by its phosphorylation in Ser5. We further show that the inhibition of l-Plastin phosphorylation restores the sensitivity of MOLP8/R to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). Our results reveal a new target gene of DR, controlled by HIF1α.
Collapse
Affiliation(s)
- Manon Bosseler
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Vanessa Marani
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Angelina Broukou
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Amandine Lequeux
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Tony Kaoma
- Bioinformatics and Modelling, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Vincent Schlesser
- Laboratory of Hematology, Centre Hospitalier de Luxembourg (CHL), L-1526 Luxembourg City, Luxembourg.
| | - Jean-Hugues François
- Laboratory of Hematology, Centre Hospitalier de Luxembourg (CHL), L-1526 Luxembourg City, Luxembourg.
| | - Valérie Palissot
- Laboratory of Oncolytic-Virus-Immuno-Therapeutics, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Guy J Berchem
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
- Laboratory of Hematology, Centre Hospitalier de Luxembourg (CHL), L-1526 Luxembourg City, Luxembourg.
| | - Nasséra Aouali
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg City, Luxembourg.
| |
Collapse
|
14
|
Irigoyen M, García-Ruiz JC, Berra E. The hypoxia signalling pathway in haematological malignancies. Oncotarget 2018; 8:36832-36844. [PMID: 28415662 PMCID: PMC5482702 DOI: 10.18632/oncotarget.15981] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Haematological malignancies are tumours that affect the haematopoietic and the lymphatic systems. Despite the huge efforts to eradicate these tumours, the percentage of patients suffering resistance to therapies and relapse still remains significant. The tumour environment favours drug resistance of cancer cells, and particularly of cancer stem/initiating cells. Hypoxia promotes aggressiveness, metastatic spread and relapse in most of the solid tumours. Furthermore, hypoxia is associated with worse prognosis and resistance to conventional treatments through activation of the hypoxia-inducible factors. Haematological malignancies are not considered solid tumours, and therefore, the role of hypoxia in these diseases was initially presumed to be inconsequential. However, hypoxia is a hallmark of the haematopoietic niche. Here, we will review the current understanding of the role of both hypoxia and hypoxia-inducible factors in different haematological tumours.
Collapse
Affiliation(s)
- Marta Irigoyen
- Centro de Investigación Cooperativa en Biociencias CIC bioGUNE, Derio, Spain
| | - Juan Carlos García-Ruiz
- Servicio de Hematología y Hemoterapia, BioCruces Health Research Institute, Hospital Universitario Cruces, Spain
| | - Edurne Berra
- Centro de Investigación Cooperativa en Biociencias CIC bioGUNE, Derio, Spain
| |
Collapse
|
15
|
Dabbah M, Attar-Schneider O, Tartakover Matalon S, Shefler I, Jarchwsky Dolberg O, Lishner M, Drucker L. Microvesicles derived from normal and multiple myeloma bone marrow mesenchymal stem cells differentially modulate myeloma cells' phenotype and translation initiation. Carcinogenesis 2017; 38:708-716. [PMID: 28838065 DOI: 10.1093/carcin/bgx045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) cells' interaction with the bone marrow (BM) microenvironment critically hinders disease therapy. Previously, we showed that MM co-culture with BM-mesenchymal stem cells (MSCs) caused co-modulation of translation initiation (TI) and cell phenotype and implicated secreted components, specifically microvesicles (MVs). Here, we studied the role of the BM-MSCs [normal donors (ND) and MM] secreted MVs in design of MM cells' phenotype, TI and signaling. BM-MSCs' MVs collected from BM-MSCs (MM/ND) cultures were applied to MM cell lines. After MVs uptake confirmation, the MM cells were assayed for viability, cell count and death, proliferation, migration, invasion, autophagy, TI status (factors, regulators, targets) and MAPKs activation. The interdependence of MAPKs, TI and autophagy was determined (inhibitors). ND-MSCs MVs' treated MM cells demonstrated a rapid (5 min) activation of MAPKs followed by a persistent decrease (1-24 h), while MM-MSCs MVs' treated cells demonstrated a rapid and continued (5 min-24 h) activation of MAPKs and TI (↑25-200%, P < 0.05). Within 24 h, BM-MSCs MVs were internalized by MM cells evoking opposite responses according to MVs origin. ND-MSCs' MVs decreased viability, proliferation, migration and TI (↓15-80%; P < 0.05), whereas MM-MSCs' MVs increased them (↑10-250%, P < 0.05). Inhibition of MAPKs in MM-MSCs MVs treated MM cells decreased TI and inhibition of autophagy elevated cell death. These data demonstrate that BM-MSCs MVs have a fundamental effect on MM cells phenotype in accordance with normal or pathological source implemented via TI modulation. Future studies will aim to elucidate the involvement of MVs-MM receptor ligand interactions and cargo transfer in our model.
Collapse
Affiliation(s)
- Mahmoud Dabbah
- Oncogenetic, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Shelly Tartakover Matalon
- Oncogenetic, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Michael Lishner
- Oncogenetic, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Oncogenetic, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget 2016; 7:5715-27. [PMID: 26735336 PMCID: PMC4868716 DOI: 10.18632/oncotarget.6796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc-overexpressing cells was fully reversed by wogonin treatment via increasing HIF-1α-VHL interaction and promoting HIF-1α degradation. Collectively, our in vitro and in vivo studies reveal for the first time that wogonin represses MM-stimulated angiogenesis and tumor progression via c-Myc/VHL/HIF-1α signaling axis.
Collapse
|
17
|
Taylor CT, Doherty G, Fallon PG, Cummins EP. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J Clin Invest 2016; 126:3716-3724. [PMID: 27454299 DOI: 10.1172/jci84433] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled inflammation underpins a diverse range of diseases where effective therapy remains an unmet clinical need. Hypoxia is a prominent feature of the inflammatory microenvironment that regulates key transcription factors including HIF and NF-κB in both innate and adaptive immune cells. In turn, altered activity of the pathways controlled by these factors can affect the course of inflammation through the regulation of immune cell development and function. In this review, we will discuss these pathways and the oxygen sensors that confer hypoxic sensitivity in immune cells. Furthermore, we will describe how hypoxia-dependent pathways contribute to immunity and discuss their potential as therapeutic targets in inflammatory and infectious disease.
Collapse
|
18
|
Rouault-Pierre K, Hamilton A, Bonnet D. Effect of hypoxia-inducible factors in normal and leukemic stem cell regulation and their potential therapeutic impact. Expert Opin Biol Ther 2016; 16:463-76. [PMID: 26679619 DOI: 10.1517/14712598.2016.1133582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Hypoxia inducible factors (HIF-1α and HIF-2α) are the main mediators of hypoxic responses that operate in both normal and pathological conditions. Recent evidence indicates that HIF-1α and HIF-2α could have overlapping, unique and even sometimes opposing activities in both normal physiology and disease. Despite an increase in our understanding of the different pathways regulated by HIF-1α and HIF-2α, the role played by each factor in HSC maintenance and leukemogenesis is still controversial. AREAS COVERED This review summarizes our current understanding of HIF-1α and HIF-2α activities and discusses the implications and challenges of using HIF inhibitors therapeutically in blood malignancies. EXPERT OPINION As HIF inhibitors are currently under clinical evaluation in different cancers, including hematological malignancies, a more thorough understanding of the unique roles performed by HIF-1α and HIF-2α in human neoplasia is warranted.
Collapse
Affiliation(s)
- Kevin Rouault-Pierre
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| | - Ashley Hamilton
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| | - Dominique Bonnet
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| |
Collapse
|
19
|
Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, Shi L, Lu X, Xu W, Lu L, Qin Y, Xiang Q, Liu Q. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett 2016; 370:125-35. [PMID: 26525579 DOI: 10.1016/j.canlet.2015.10.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bairu Wang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Le Shi
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaolin Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenchao Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lu Lu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Qin
- Institute of Chronic Non-communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Quanyong Xiang
- Institute of Chronic Non-communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
20
|
He Y, Wang Y, Liu H, Xu X, He S, Tang J, Huang Y, Miao X, Wu Y, Wang Q, Cheng C. Pyruvate kinase isoform M2 (PKM2) participates in multiple myeloma cell proliferation, adhesion and chemoresistance. Leuk Res 2015; 39:1428-36. [PMID: 26453405 DOI: 10.1016/j.leukres.2015.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Cell adhesion mediated drug resistance (CAM-DR) remains the major barrier in human multiple myeloma (MM) therapy. In the present study, we aimed at investigating the role of pyruvate kinase isoform M2 (PKM2) in MM CAM-DR. We determined that PKM2 expression was positively correlated with cell proliferation and knockdown of PKM2 contributed to the increased cell adhesion rate in MM. The enhancement in the adhesion of MM cells to fibronectin or the bone marrow stroma cell line HS-5 cells translated to an increased CAM-DR phenotype. Importantly, we showed that this CAM-DR phenotype was correlated with the phosphorylation of Akt and ERK in MM cells. Taken together, our data shed new light on the molecular mechanism of CAM-DR in MM, and targeting PKM2 may be a novel therapeutic approach for improving the effectiveness of chemotherapy in MM.
Collapse
Affiliation(s)
- Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong 22600, Jiangsu Province, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jie Tang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yuejiao Huang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qiru Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Chun Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Borsi E, Terragna C, Brioli A, Tacchetti P, Martello M, Cavo M. Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma. Transl Res 2015; 165:641-50. [PMID: 25553605 DOI: 10.1016/j.trsl.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by accumulation of malignant plasma cells (PCs) within the bone marrow (BM). The PCs are in close contact with stromal cells, which secrete growth factors and cytokines, promoting tumor cell growth and survival. Despite the availability of new drugs with immunomodulatory properties targeting the neoplastic clone and its microenvironment, MM is still an incurable disease, with patients experiencing subsequent phases of remission and relapse, eventually leading to disease resistance and patient death. It is now well established that the MM BM microenvironment is hypoxic, a condition required for the activation of the hypoxia-inducible factor 1 alpha (HIF-1α). It has been shown that HIF-1α is constitutively expressed in MM even in normoxic conditions, suggesting that HIF-1α suppression might be part of a therapeutic strategy. Constitutively activated HIF-1α enhances neovascularization, increases glucose metabolism, and induces the expression of antiapoptotic proteins. HIF-1α is thought to be one of the most important molecular targets in the treatment of cancer, and a variety of chemical inhibitors for HIF-1α have been developed to date. This review examines the role of HIF-1α in MM and recent developments in harnessing the therapeutic potential of HIF-1α inhibition in MM.
Collapse
Affiliation(s)
- Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Annamaria Brioli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Paola Tacchetti
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Marina Martello
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy
| | - Michele Cavo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Institute of Hematology, "L. & A. Seràgnoli," Bologna University, S. Orsola's University Hospital, Bologna, Italy.
| |
Collapse
|
22
|
Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015; 125:3049-58. [PMID: 25838343 DOI: 10.1182/blood-2014-11-568881] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Over the past 4 decades, basic research has provided crucial information regarding the cellular and molecular biology of cancer. In particular, the relevance of cancer microenvironment (including both cellular and noncellular elements) and the concept of clonal evolution and heterogeneity have emerged as important in cancer pathogenesis, immunologic escape, and resistance to therapy. Multiple myeloma (MM), a cancer of terminally differentiated plasma cells, is emblematic of the impact of cancer microenvironment and the role of clonal evolution. Although genetic and epigenetic aberrations occur in MM and evolve over time under the pressure of exogenous stimuli, they are also largely present in premalignant plasma cell dyscrasia such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), suggesting that genetic mutations alone are necessary, but not sufficient, for myeloma transformation. The role of bone marrow microenvironment in mediating survival, proliferation, and resistance to therapy in myeloma is well established; and although an appealing speculation, its role in fostering the evolution of MGUS or SMM into MM is yet to be proven. In this review, we discuss MM pathogenesis with a particular emphasis on the role of bone marrow microenvironment.
Collapse
|
23
|
Amend SR, Pienta KJ. Ecology meets cancer biology: the cancer swamp promotes the lethal cancer phenotype. Oncotarget 2015; 6:9669-78. [PMID: 25895024 PMCID: PMC4496388 DOI: 10.18632/oncotarget.3430] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/24/2015] [Indexed: 12/27/2022] Open
Abstract
As they grow, tumors fundamentally alter their microenvironment, disrupting the homeostasis of the host organ and eventually the patient as a whole. Lethality is the ultimate result of deregulated cell signaling and regulatory mechanisms as well as inappropriate host cell recruitment and activity that lead to the death of the patient. These processes have striking parallels to the framework of ecological biology: multiple interacting ecosystems (organ systems) within a larger biosphere (body), alterations in species stoichiometry (host cell types), resource cycling (cellular metabolism and cell-cell signaling), and ecosystem collapse (organ failure and death). In particular, as cancer cells generate their own niche within the tumor ecosystem, ecological engineering and autoeutrophication displace normal cell function and result in the creation of a hypoxic, acidic, and nutrient-poor environment. This "cancer swamp" has genetic and epigenetic effects at the local ecosystem level to promote metastasis and at the systemic host level to induce cytokine-mediated lethal syndromes, a major cause of death of cancer patients.
Collapse
Affiliation(s)
- Sarah R. Amend
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD
| | - Kenneth J. Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|