1
|
Sarkar P, Redondo J, Hares K, Bailey S, Georgievskaya A, Heesom K, Kemp KC, Scolding NJ, Rice CM. Reduced expression of mitochondrial fumarate hydratase in progressive multiple sclerosis contributes to impaired in vitro mesenchymal stromal cell-mediated neuroprotection. Mult Scler 2021; 28:1179-1188. [PMID: 34841955 PMCID: PMC9189727 DOI: 10.1177/13524585211060686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Cell-based therapies for multiple sclerosis (MS), including those employing
autologous bone marrow-derived mesenchymal stromal cells (MSC) are being
examined in clinical trials. However, recent studies have identified
abnormalities in the MS bone marrow microenvironment. Objective: We aimed to compare the secretome of MSC isolated from control subjects
(C-MSC) and people with MS (MS-MSC) and explore the functional relevance of
findings. Methods: We employed high throughput proteomic analysis, enzyme-linked immunosorbent
assays and immunoblotting, as well as in vitro assays of enzyme activity and
neuroprotection. Results: We demonstrated that, in progressive MS, the MSC secretome has lower levels
of mitochondrial fumarate hydratase (mFH). Exogenous mFH restores the in
vitro neuroprotective potential of MS-MSC. Furthermore, MS-MSC expresses
reduced levels of fumarate hydratase (FH) with downstream reduction in
expression of master regulators of oxidative stress. Conclusions: Our findings are further evidence of dysregulation of the bone marrow
microenvironment in progressive MS with respect to anti-oxidative capacity
and immunoregulatory potential. Given the clinical utility of the fumaric
acid ester dimethyl fumarate in relapsing–remitting MS, our findings have
potential implication for understanding MS pathophysiology and personalised
therapeutic intervention.
Collapse
Affiliation(s)
- Pamela Sarkar
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Juliana Redondo
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kelly Hares
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steven Bailey
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Anastasia Georgievskaya
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate Heesom
- Bristol Proteomics Facility, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kevin C Kemp
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil J Scolding
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Claire M Rice
- Clinical Neurosciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Neurology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| |
Collapse
|
2
|
Maffioli E, Nonnis S, Angioni R, Santagata F, Calì B, Zanotti L, Negri A, Viola A, Tedeschi G. Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J Proteomics 2017; 166:115-126. [DOI: 10.1016/j.jprot.2017.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
|
3
|
Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells. Cytotherapy 2017; 19:629-639. [PMID: 28366194 DOI: 10.1016/j.jcyt.2017.02.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND The growth properties and neurotrophic and angiogenic effects of human mesenchymal stromal cells (MSCs) cultured in a defined xeno-free, serum-free medium (MesenCult-XF) were investigated. METHODS Human MSCs from adipose tissue (ASCs) and bone marrow (BMSCs) were cultured in Minimum Essential Medium-alpha (α-MEM) containing fetal calf serum or in MesenCult-XF. Proliferation was measured over 10 passages and the colony-forming unit (CFU) assay and expression of cluster of differentiation (CD) surface markers were determined. Neurite outgrowth and angiogenic activity of the MSCs were determined. RESULTS At early passage, both ASCs and BMSCs showed better proliferation in MesenCult-XF compared with standard α-MEM-containing serum. However, CFUs were significantly lower in MesenCult-XF. ASCs cultured in MesenCult-XF continued to expand at faster rates than cells grown in serum. BMSCs showed morphological changes at late passage in MesenCult-XF and stained positive for senescence β-galactosidase activity. Expression levels of CD73 and CD90 were similar in both cell types under the various culture conditions but CD105 was significantly reduced at passage 10 in MesenCult-XF. In vitro stimulation of the cells enhanced the expression of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and angiopoietin-1. Stimulated ASCs grown in MesenCult-XF evoked the longest neurite outgrowth in a neuron co-culture model. Stimulated BMSCs grown in MesenCult-XF produced the most extensive network of capillary-like tube structures in an in vitro angiogenesis assay. CONCLUSIONS ASCs and BMSCs exhibit high levels of neurotrophic and angiogenic activity when grown in the defined serum-free medium indicating their suitability for treatment of various neurological conditions. However, long-term expansion in MesenCult-XF might be restricted to ASCs.
Collapse
|