1
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
2
|
Wu Y, Yin H, Zhang X, Shen R, Zhu X, Jia M. Role of DEP domain-containing protein 1B (DEPDC1B) in epithelial ovarian cancer. J Cancer 2023; 14:784-792. [PMID: 37056386 PMCID: PMC10088892 DOI: 10.7150/jca.78423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/14/2023] [Indexed: 04/15/2023] Open
Abstract
Aberrant expression of DEPDC1B (DEP domain-containing protein 1B) has been shown to be associated with various types of malignant tumors. However, little is known about the role of DEPDC1B in epithelial ovarian cancer (EOC). The purpose of this study was to investigate the expression and role of DEPDC1B in EOC. Immunohistochemical staining of 60 high-grade serous ovarian cancer (HGSOC) showed that DEPDC1B expression was associated with response to first line chemotherapy, and DEPDC1B expression was higher in platinum-resistant patients than in platinum-sensitive patients. However, there was no association between DEPDC1B expression and age, preoperative CA125 level, ascites status, location, FIGO stage, and residual disease. Furthermore, our study demonstrated that increased DEPDC1B expression was correlated with reduced overall survival (OS) and progression-free survival (PFS) time in patients with HGSOC. Multivariate analysis showed that DEPDC1B independently predicted OS in patients with HGSOC. However, DEPDC1B expression was not an independent prognostic factor for PFS in patients with HGSOC. Moreover, our study demonstrated that DEPDC1B could promote the proliferation of OVCAR3 and SKOV3 cells by enhancing AKT phosphorylation at Ser473. Treatment with MK2206 and LY294002 significantly suppressed cell proliferation that is induced by DEPDC1B up-regulation in both OVCAR3 and SKOV3 cells. Together, these results revealed that DEPDC1B was an independent prognostic factor for OS in patients with HGSOC, and DEPDC1B may promote the proliferation of EOC cells via enhancing AKT phosphorylation at Ser473.
Collapse
Affiliation(s)
- Yaxun Wu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Haibing Yin
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
- ✉ Corresponding authors: (M. Jia), (X. Zhu)
| | - Meiqun Jia
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
- ✉ Corresponding authors: (M. Jia), (X. Zhu)
| |
Collapse
|
3
|
Pang K, Li ML, Hao L, Shi ZD, Feng H, Chen B, Ma YY, Xu H, Pan D, Chen ZS, Han CH. ERH Gene and Its Role in Cancer Cells. Front Oncol 2022; 12:900496. [PMID: 35677162 PMCID: PMC9169799 DOI: 10.3389/fonc.2022.900496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major public health problem worldwide. Studies on oncogenes and tumor-targeted therapies have become an important part of cancer treatment development. In this review, we summarize and systematically introduce the gene enhancer of rudimentary homolog (ERH), which encodes a highly conserved small molecule protein. ERH mainly exists as a protein partner in human cells. It is involved in pyrimidine metabolism and protein complexes, acts as a transcriptional repressor, and participates in cell cycle regulation. Moreover, it is involved in DNA damage repair, mRNA splicing, the process of microRNA hairpins as well as erythroid differentiation. There are many related studies on the role of ERH in cancer cells; however, there are none on tumor-targeted therapeutic drugs or related therapies based on the expression of ERH. This study will provide possible directions for oncologists to further their research studies in this field.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mei-Li Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Xuzhou, China.,Department of Ophthalmology, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Harry Feng
- STEM Academic Department, Wyoming Seminary, Kingston, PA, United States
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Affiliated Central Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Morinaga Y, Igase M, Yanase T, Sakai Y, Sakai H, Fujiwara-Igarashi A, Tsujimoto H, Okuda M, Mizuno T. Expression of DEP Domain-Containing 1B in Canine Lymphoma and Other Types of Canine Tumours. J Comp Pathol 2021; 185:55-65. [PMID: 34119232 DOI: 10.1016/j.jcpa.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/08/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Canine lymphoma is the most common haematological malignancy in dogs and is typically treated with multidrug chemotherapy. Most cases are at risk of relapse after several courses of chemotherapy and the oncogenic mechanism remains unknown. This study was aimed at identifying genes expressed in canine lymphoma by cDNA microarray. We found elevated expression of Dishevelled, EGL-10 and pleckstrin (DEP) domain-containing 1B (DEPDC1B) in canine lymphoma cells compared with cells and tissues from healthy dogs. Canine DEPDC1B protein was detected in 13 of 41 lymphoma specimens by immunohistochemistry, but was not detected in lymph nodes from normal dogs. Immunoreactive DEPDC1B protein was also detected in several other types of canine tumour. This is the first report documenting the association of DEPDC1B with canine cancer and the results suggest that DEPDC1B might serve as a potential marker or therapeutic target for canine malignancies.
Collapse
Affiliation(s)
- Yuki Morinaga
- Laboratory of Molecular Diagnostics and Therapeutics, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Japan
| | - Takuma Yanase
- Laboratory of Molecular Diagnostics and Therapeutics, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Aki Fujiwara-Igarashi
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Japan.
| |
Collapse
|
5
|
Tu M, Ye L, Hu S, Wang W, Zhu P, Lu X, Zheng W. Identification of Glioma Specific Genes as Diagnostic and Prognostic Markers for Glioma. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200424090954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
Malignant gliomas are the most prevalent malignancy of the brain.
However, there was still lack of sensitive and accurate biomarkers for gliomas.
Objective:
To explore the mechanisms underlying glioma progression and identify novel
diagnostic and prognostic markers for glioma.
Methods:
By analyzing TCGA dataset, whole-genome genes expression levels were evaluated in
19 different types of human cancers. A protein-protein interacting network was constructed to
reveal the potential roles of these glioma special genes. KEGG and GO analysis revealed the
potential effect of these genes.
Results:
We identified 698 gliomas specially expressed genes by analyzing TCGA dataset. A
protein-protein interacting network was constructed to reveal the potential roles of these glioma
special genes. KEGG and GO analysis showed gliomas specially expressed genes were involved in
regulating neuroactive ligand-receptor interaction, retrograde endocannabinoid signaling,
Glutamatergic synapse, chemical synaptic transmission, nervous system development, central
nervous system development, and learning. Of note, GRIA1, GNAO1, GRIN1, CACNA1A,
CAMK2A, and SYP were identified to be down-regulated and associated with poor prognosis in
gliomas.
Conclusion:
GRIA1, GNAO1, GRIN1, CACNA1A, CAMK2A, and SYP were identified to be
down-regulated and associated with poor prognosis in gliomas. We thought this study will provide
novel biomarkers for gliomas.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,China
| | - Ling Ye
- Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong,China
| | - ShaoBo Hu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,China
| | - Wei Wang
- Department of Emergency, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,China
| | - Penglei Zhu
- Department of Neurosurgery, Wenzhou People 's Hospital, Wenzhou, Zhejiang,China
| | - XiangHe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,China
| | - WeiMing Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang,China
| |
Collapse
|
6
|
Lai CH, Xu K, Zhou J, Wang M, Zhang W, Liu X, Xiong J, Wang T, Wang Q, Wang H, Xu T, Hu H. DEPDC1B is a tumor promotor in development of bladder cancer through targeting SHC1. Cell Death Dis 2020; 11:986. [PMID: 33203836 PMCID: PMC7672062 DOI: 10.1038/s41419-020-03190-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Bladder cancer is one of the most commonly diagnosed malignant tumors in the urinary system and causes a massive cancer-related death. DEPDC1B is a DEP domain-containing protein that has been found to be associated with a variety of human cancers. This study aimed to explore the role and mechanism of DEPDC1B in the development of bladder cancer. The analysis of clinical specimens revealed the upregulated expression of DEPDC1B in bladder cancer, which was positively related to tumor grade. In vitro and in vivo studies showed that DEPDC1B knockdown could inhibit the growth of bladder cancer cells or xenografts in mice. The suppression of bladder cancer by DEPDC1B was executed through inhibiting cell proliferation, cell migration, and promoting cell apoptosis. Moreover, a mechanistic study found that SHC1 may be an important route through which DEPDC1B regulates the development of bladder cancer. Knockdown of SHC1 in DEPDC1B-overexpressed cancer cells could abolish the promotion effects induced by DEPDC1B. In conclusion, DEPDC1B was identified as a key regulator in the development of bladder cancer, which may be used as a potential therapeutic target in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chin-Hui Lai
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Jianhua Zhou
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Mingrui Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Weiyu Zhang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xianhui Liu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Jie Xiong
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Huanrui Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
7
|
Igase M, Morinaga Y, Kato M, Tsukui T, Sakai Y, Okuda M, Mizuno T. Establishment of rat anti-canine DEP domain containing 1B (DEPDC1B) monoclonal antibodies. J Vet Med Sci 2020; 82:483-487. [PMID: 32147621 PMCID: PMC7192719 DOI: 10.1292/jvms.19-0667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DEP domain-containing 1B (DEPDC1B) is involved in the regulation of cell de-adhesion and
actin cytoskeleton activity during the G2/M transition of the cell cycle, and its
overexpression has been proven to be associated with cancer progression in several human
cancers. Canine DEPDC1B was identified as a gene that was overexpressed in canine lymphoma
tissues in our previous study. However, in dogs, the protein expression of DEPDC1B remains
to be determined due to the lack of a specific monoclonal antibody. Here, we developed rat
monoclonal antibodies against canine DEPDC1B and characterized their applicability for
immunodetection assays. Our findings demonstrated that these antibodies are functional and
can be important tools to investigate the precise role of DEPDC1B in canine tumors.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Yuki Morinaga
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Masahiro Kato
- Nippon Zenyaku Kogyo Co., Ltd., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima 963-0196, Japan
| | - Toshihiro Tsukui
- Nippon Zenyaku Kogyo Co., Ltd., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima 963-0196, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| |
Collapse
|
8
|
Gai Z, Zhao J. Genome-wide analysis reveals the functional and expressional correlation between RhoGAP and RhoGEF in mouse. Genomics 2020; 112:1694-1706. [DOI: 10.1016/j.ygeno.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022]
|
9
|
Zhang S, Shi W, Hu W, Ma D, Yan D, Yu K, Zhang G, Cao Y, Wu J, Jiang C, Wang Z. DEP Domain-Containing Protein 1B (DEPDC1B) Promotes Migration and Invasion in Pancreatic Cancer Through the Rac1/PAK1-LIMK1-Cofilin1 Signaling Pathway. Onco Targets Ther 2020; 13:1481-1496. [PMID: 32110046 PMCID: PMC7035893 DOI: 10.2147/ott.s229055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background With increasing incidence, pancreatic cancer (PC) is one of the most common digestive tract tumors. However, the prognosis of PC is particularly dismal due to the highly invasive and metastatic behavior of this deadly disease. DEP domain-containing protein 1B (DEPDC1B), which is overexpressed in multiple tumors, such as breast cancer, oral cancer and non-small cell lung cancer, plays a significant role in cell movement, cell cycle and cytoskeleton reorganization. However, the function of DEPDC1B in PC remains poorly understood. Methods The function of DEPDC1B in the migration and invasion of PC was evaluated by wound healing and Transwell assays in vitro and PC-derived liver metastasis models in vivo. The molecular mechanisms of DEPDC1B were investigated through cell line establishment, Western blotting, qRT-PCR, immunoprecipitation, histological examination and immunohistochemistry analysis. Results DEPDC1B was overexpressed in PC cell lines. DEPDC1B regulated cell migration and invasion. DEPDC1B regulated the Rac1/PAK1-LIMK1-cofilin1 signaling pathway by interacting with Rac1. Rac1 inhibition suppressed DEPDC1B-induced migration and invasion in PC in vitro and DEPDC1B-induced liver metastasis in vivo. Conclusion DEPDC1B promoted cell migration and invasion by activating the Rac1/PAK1-LIMK1-cofilin1 signaling pathway, thus providing a potential therapeutic target against PC.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Weiwei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Wei Hu
- Department of Hepatobiliary Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu 222001, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Ding Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Dongliang Yan
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Kuanyong Yu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Guang Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Yin Cao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, People's Republic of China
| |
Collapse
|
10
|
Figeac N, Pruller J, Hofer I, Fortier M, Ortuste Quiroga HP, Banerji CRS, Zammit PS. DEPDC1B is a key regulator of myoblast proliferation in mouse and man. Cell Prolif 2020; 53:e12717. [PMID: 31825138 PMCID: PMC6985657 DOI: 10.1111/cpr.12717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES DISHEVELLED, EGL-10, PLECKSTRIN (DEP) domain-containing 1B (DEPDC1B) promotes dismantling of focal adhesions and coordinates detachment events during cell cycle progression. DEPDC1B is overexpressed in several cancers with expression inversely correlated with patient survival. Here, we analysed the role of DEPDC1B in the regulation of murine and human skeletal myogenesis. MATERIALS AND METHODS Expression dynamics of DEPDC1B were examined in murine and human myoblasts and rhabdomyosarcoma cells in vitro by RT-qPCR and/or immunolabelling. DEPDC1B function was mainly tested via siRNA-mediated gene knockdown. RESULTS DEPDC1B was expressed in proliferating murine and human myoblasts, with expression then decreasing markedly during myogenic differentiation. SiRNA-mediated knockdown of DEPDC1B reduced myoblast proliferation and induced entry into myogenic differentiation, with deregulation of key cell cycle regulators (cyclins, CDK, CDKi). DEPDC1B and β-catenin co-knockdown was unable to rescue proliferation in myoblasts, suggesting that DEPDC1B functions independently of canonical WNT signalling during myogenesis. DEPDC1B can also suppress RHOA activity in some cell types, but DEPDC1B and RHOA co-knockdown actually had an additive effect by both further reducing proliferation and enhancing myogenic differentiation. DEPDC1B was expressed in human Rh30 rhabdomyosarcoma cells, where DEPDC1B or RHOA knockdown promoted myogenic differentiation, but without influencing proliferation. CONCLUSION DEPDC1B plays a central role in myoblasts by driving proliferation and preventing precocious myogenic differentiation during skeletal myogenesis in both mouse and human.
Collapse
Affiliation(s)
- Nicolas Figeac
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | - Johanna Pruller
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | - Isabella Hofer
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | - Mathieu Fortier
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | | | | | - Peter S. Zammit
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| |
Collapse
|
11
|
Liu PY, Tee AE, Milazzo G, Hannan KM, Maag J, Mondal S, Atmadibrata B, Bartonicek N, Peng H, Ho N, Mayoh C, Ciaccio R, Sun Y, Henderson MJ, Gao J, Everaert C, Hulme AJ, Wong M, Lan Q, Cheung BB, Shi L, Wang JY, Simon T, Fischer M, Zhang XD, Marshall GM, Norris MD, Haber M, Vandesompele J, Li J, Mestdagh P, Hannan RD, Dinger ME, Perini G, Liu T. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nat Commun 2019; 10:5026. [PMID: 31690716 PMCID: PMC6831662 DOI: 10.1038/s41467-019-12971-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets. MYCN amplification is common in neuroblastomas. Here, the authors identify a long noncoding RNA, lncNB1 in these cancers and show that it promotes tumorigenesis by binding to ribosomal protein, RPL35 to enhance E2F1 and DEPDC1B protein synthesis, which phosphorylates ERK to stabilise N-Myc.
Collapse
Affiliation(s)
- Pei Y Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Andrew E Tee
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Katherine M Hannan
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jesper Maag
- Garvan Institute of Medical Research, Sydney, Darlinghurst, NSW, 2010, Australia.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sujanna Mondal
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research, Sydney, Darlinghurst, NSW, 2010, Australia.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui Peng
- Advanced Analytics Institute, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Nicholas Ho
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Yuting Sun
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Jixuan Gao
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Celine Everaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Amy J Hulme
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Qing Lan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, 215004, Suzhou, Jiangsu, P.R. China
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, 201203, Shanghai, China
| | - Jenny Y Wang
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Hospital, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Hospital, University of Cologne, Cologne, Germany
| | - Xu D Zhang
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ross D Hannan
- Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, Darlinghurst, NSW, 2010, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW, 2031, Australia.
| |
Collapse
|
12
|
Bai S, Chen T, Du T, Chen X, Lai Y, Ma X, Wu W, Lin C, Liu L, Huang H. High levels of DEPDC1B predict shorter biochemical recurrence-free survival of patients with prostate cancer. Oncol Lett 2017; 14:6801-6808. [PMID: 29163701 DOI: 10.3892/ol.2017.7027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
DEP domain-containing protein 1B (DEPDC1B) has been reported to serve important functions in breast cancer and non-small cell lung cancer. However, its involvement in the development of prostate cancer (PCa) remains unclear. Therefore, the present study aimed to investigate the expression and clinical significance of DEPDC1B in tumor tissues from patients diagnosed with PCa. A total of 80 prostate tissue samples were collected following prostatectomy to generate a tissue microarray for immunohistochemical analysis of DEPDC1B protein expression. High throughput sequencing of mRNAs from 179 prostate tissue samples, either from patients with PCa or from healthy controls, was included in the Taylor dataset. The expression levels of DEPDC1B in tumor tissues from patients with PCa were revealed to be significantly increased compared with those in normal prostate tissues (P=0.039). Increased expression of DEPDC1B was significantly associated with advanced clinical stage (P=0.006), advanced T stage (P=0.012) and lymph node metastasis (P=0.004). Kaplan-Meier analysis demonstrated that patients with high levels of DEPDC1B mRNA had significantly shorter biochemical recurrence (BCR)-free survival times. Multivariate analysis using Cox proportional hazards model revealed that levels of DEPDC1B mRNA were significant independent predictors of BCR-free survival time of patients with PCa. Therefore, the expression of DEPDC1B may be used as an independent predictor of biochemical recurrence-free survival time of patients with PCa.
Collapse
Affiliation(s)
- Shoumin Bai
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ting Chen
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tao Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xianju Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaoming Ma
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wanhua Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chunhao Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Leyuan Liu
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Hai Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
13
|
Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Sci Rep 2016; 6:39655. [PMID: 28000796 PMCID: PMC5175133 DOI: 10.1038/srep39655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.
Collapse
|