1
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
2
|
The Effect of Glutathione Peroxidase-1 Knockout on Anticancer Drug Sensitivities and Reactive Oxygen Species in Haploid HAP-1 Cells. Antioxidants (Basel) 2020; 9:antiox9121300. [PMID: 33353055 PMCID: PMC7766971 DOI: 10.3390/antiox9121300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
The role of glutathione peroxidases (GPx) in cancer and their influence on tumor prognosis and the development of anticancer drug resistance has been extensively and controversially discussed. The aim of this study was to evaluate the influence of GPx1 expression on anticancer drug cytotoxicity. For this purpose, a GPx1 knockout of the near-haploid human cancer cell line HAP-1 was generated and compared to the native cell line with regards to morphology, growth and metabolic rates, and oxidative stress defenses. Furthermore, the IC50 values of two peroxides and 16 widely used anticancer drugs were determined in both cell lines. Here we report that the knockout of GPx1 in HAP-1 cells has no significant effect on cell size, viability, growth and metabolic rates. Significant increases in the cytotoxic potency of hydrogen peroxide and tert-butylhydroperoxide, the anticancer drugs cisplatin and carboplatin as well as the alkylating agents lomustine and temozolomide were found. While a concentration dependent increases in intracellular reactive oxygen species (ROS) levels were observed for both HAP-1 cell lines treated with either cisplatin, lomustine or temozolamide, no significant enhancement in ROS levels was observed in the GPx1 knockout compared to the native cell line except at the highest concentration of temozolamide. On the other hand, a ca. 50% decrease in glutathione levels was noted in the GPx1 knockout relative to the native line, suggesting that factors other than ROS levels alone play a role in the increased cytotoxic activity of these drugs in the GPx1 knockout cells.
Collapse
|
3
|
Jovanović M, Dragoj M, Zhukovsky D, Dar'in D, Krasavin M, Pešić M, Podolski-Renić A. Novel TrxR1 Inhibitors Show Potential for Glioma Treatment by Suppressing the Invasion and Sensitizing Glioma Cells to Chemotherapy. Front Mol Biosci 2020; 7:586146. [PMID: 33134322 PMCID: PMC7573255 DOI: 10.3389/fmolb.2020.586146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
Currently, available glioblastoma (GBM) treatment remains ineffective, with relapse after initial response and low survival rate of GBM patients. The reasons behind limited capacities for GBM treatment are high tumor heterogeneity, invasiveness, and occurrence of drug resistance. Therefore, developing novel therapeutic strategies is of utmost importance. Thioredoxin reductase (TrxR) is a novel, promising target due to its overexpression in many cancer types and important role in cancer progression. Previous research on Ugi-type Michael acceptors–inhibitors of TrxR showed desirable anticancer properties, with significant selectivity toward cancer cells. Herein, two TrxR inhibitors, 5 and 6, underwent in-depth study on multidrug-resistant (MDR) glioma cell lines. Besides the antioxidative effects, 5 and 6 induced cell death, decreased cell proliferation, and suppressed invasion and migration of glioma cells. Both compounds showed a synergistic effect in combination with temozolomide (TMZ), a first-line chemotherapeutic for GBM treatment. Moreover, 5 and 6 affected activity of P-glycoprotein extrusion pump that could be found in cancer cells and in the blood–brain barrier (BBB), thus showing potential for suppressing MDR phenotype in cancer cells and evading BBB. In conclusion, investigated TrxR inhibitors are effective anticancer compounds, acting through inhibition of the thioredoxin system and perturbation of antioxidative defense systems of glioma cells. They are suitable for combining with other chemotherapeutics, able to surpass the BBB and overcome MDR. Thus, our findings suggest further exploration of Ugi-type Michael acceptors–TrxR inhibitors’ potential as an adjuvant therapy for GBM treatment.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Daniil Zhukovsky
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Russian Federation, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, Bade D, Li L, Sun Y, Wang Y. Adenylate Kinase 4 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an m 6A-Based Epitranscriptomic Mechanism. Mol Ther 2020; 28:2593-2604. [PMID: 32956623 DOI: 10.1016/j.ymthe.2020.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in mRNA and this methylation constitutes an important regulatory mechanism for the stability and translational efficiency of mRNA. In this study, we found that the protein levels of adenylate kinase 4 (AK4) and m6A writer METTL3 are significantly higher in tamoxifen-resistant (TamR) MCF-7 cells than in parental cells. The TamR MCF-7 cells also exhibit increased methylation at multiple m6A consensus motif sites in the 5' untranslated region (5' UTR) of AK4 mRNA, and genetic depletion of METTL3 in TamR MCF-7 cells led to a diminished AK4 protein level and attenuated resistance to tamoxifen. In addition, we observed augmented levels of reactive oxygen species (ROS) and p38 activity in TamR MCF-7 cells, and both are diminished upon genetic depletion of AK4. Reciprocally, overexpression of AK4 in MCF-7 cells stimulates ROS and p38 phosphorylation levels, and it suppresses mitochondrial apoptosis. Moreover, scavenging of intracellular ROS leads to reduced p38 activity and re-sensitizes TamR MCF-7 cells to tamoxifen. Thus, our results uncover a novel m6A-mediated epitranscriptomic mechanism for the regulation of AK4, illustrate the cellular pathways through which increased AK4 expression contributes to tamoxifen resistance, and reveal AK4 as a potential therapeutic target for overcoming tamoxifen resistance.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Gwendolyn Gonzalez
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92502, USA
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jun Yuan
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92502, USA
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92502, USA
| | - David Bade
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92502, USA
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Yuxiang Sun
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA; Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92502, USA.
| |
Collapse
|
5
|
Maccallini C, Arias F, Gallorini M, Amoia P, Ammazzalorso A, De Filippis B, Fantacuzzi M, Giampietro L, Cataldi A, Camacho ME, Amoroso R. Antiglioma Activity of Aryl and Amido-Aryl Acetamidine Derivatives Targeting iNOS: Synthesis and Biological Evaluation. ACS Med Chem Lett 2020; 11:1470-1475. [PMID: 32676156 DOI: 10.1021/acsmedchemlett.0c00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide is an important inflammation mediator with a recognized role in the development of different cancers. Gliomas are primary tumors of the central nervous system with poor prognosis, and the expression of the inducible nitric oxide synthase correlates with the degree of malignancy, changes in vascular reactivity, and neo-angiogenesis. Therefore, targeting the nitric oxide biosynthesis appears as a potential strategy to impair glioma progression. In the present work a set of aryl and amido-aryl acetamidine derivatives were synthesized to obtain new potent and selective inducible nitric oxide synthase inhibitors with improved physicochemical parameters with respect to the previously published molecules. Compound 17 emerged as the most promising inhibitor and was evaluated on C6 rat glioma cell line, showing antiproliferative effects and high selectivity over astrocytes.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Fabio Arias
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Pasquale Amoia
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - María Encarnación Camacho
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| |
Collapse
|
6
|
Efferth T, Saeed ME, Kadioglu O, Seo EJ, Shirooie S, Mbaveng AT, Nabavi SM, Kuete V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol Adv 2020; 38:107342. [DOI: 10.1016/j.biotechadv.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 01/25/2023]
|
7
|
Podolski-Renić A, Dinić J, Stanković T, Jovanović M, Ramović A, Pustenko A, Žalubovskis R, Pešić M. Sulfocoumarins, specific carbonic anhydrase IX and XII inhibitors, interact with cancer multidrug resistant phenotype through pH regulation and reverse P-glycoprotein mediated resistance. Eur J Pharm Sci 2019; 138:105012. [PMID: 31330259 DOI: 10.1016/j.ejps.2019.105012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
New 6-triazolyl-substituted sulfocoumarins were described as potent inhibitors of the transmembrane human carbonic anhydrase isoforms, CAIX and CAXII. These membrane associated enzymes that maintain pH and CO2 homeostasis are involved in cancer progression, invasion, and resistance to therapy. Recently, it was shown that CAXII expression associates with the expression of P-glycoprotein in multidrug resistant cancer cells. CAXII regulates P-glycoprotein activity by maintaining high intracellular pHi. In this study, the activity of three new sulfocoumarins was evaluated in three sensitive and corresponding multidrug resistant cancer cell lines with increased P-glycoprotein expression (non-small cell lung carcinoma, colorectal carcinoma and glioblastoma). Compound 3 showed the highest potential for cancer cell growth inhibition in all tested cell lines. Flow cytometric analyses showed that compound 3 induced intracellular acidification, cell cycle arrest in G2/M phase and necrosis in non-small cell lung carcinoma cells. Compound 3 demonstrated irreversible, concentration- and time-dependent inhibition of P-glycoprotein activity in multidrug resistant non-small cell lung carcinoma cells. The suppression of P-glycoprotein activity was accompanied with increased P-glycoprotein expression suggesting a compensatory mechanism of multidrug resistant cancer cells. In addition, compound 3 was able to sensitize multidrug resistant non-small cell lung carcinoma cells to doxorubicin. Overall, results imply that compound 3 has multidrug resistance modulating effect through intracellular acidification and subsequent inhibition of P-glycoprotein activity.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelena Dinić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Stanković
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Amra Ramović
- State University of Novi Pazar, Vuka Karadzica bb, 36300 Novi Pazar, Serbia
| | - Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Milica Pešić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
8
|
Modulation of Antioxidant Potential with Coenzyme Q10 Suppressed Invasion of Temozolomide-Resistant Rat Glioma In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3061607. [PMID: 30984333 PMCID: PMC6432727 DOI: 10.1155/2019/3061607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
The main reasons for the inefficiency of standard glioblastoma (GBM) therapy are the occurrence of chemoresistance and the invasion of GBM cells into surrounding brain tissues. New therapeutic approaches obstructing these processes may provide substantial survival improvements. The purpose of this study was to assess the potential of lipophilic antioxidant coenzyme Q10 (CoQ10) as a scavenger of reactive oxygen species (ROS) to increase sensitivity to temozolomide (TMZ) and suppress glioma cell invasion. To that end, we used a previously established TMZ-resistant RC6 rat glioma cell line, characterized by increased production of ROS, altered antioxidative capacity, and high invasion potential. CoQ10 in combination with TMZ exerted a synergistic antiproliferative effect. These results were confirmed in a 3D model of microfluidic devices showing that the CoQ10 and TMZ combination is more cytotoxic to RC6 cells than TMZ monotherapy. In addition, cotreatment with TMZ increased expression of mitochondrial antioxidant enzymes in RC6 cells. The anti-invasive potential of the combined treatment was shown by gelatin degradation, Matrigel invasion, and 3D spheroid invasion assays as well as in animal models. Inhibition of MMP9 gene expression as well as decreased N-cadherin and vimentin protein expression implied that CoQ10 can suppress invasiveness and the epithelial to mesenchymal transition in RC6 cells. Therefore, our data provide evidences in favor of CoQ10 supplementation to standard GBM treatment due to its potential to inhibit GBM invasion through modulation of the antioxidant capacity.
Collapse
|
9
|
The Selective Acetamidine-Based iNOS Inhibitor CM544 Reduces Glioma Cell Proliferation by Enhancing PARP-1 Cleavage In Vitro. Int J Mol Sci 2019; 20:ijms20030495. [PMID: 30678338 PMCID: PMC6387310 DOI: 10.3390/ijms20030495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/31/2023] Open
Abstract
Gliomas are the most aggressive adult primary brain tumors. Expression of inducible Nitric Oxide Synthase has been reported as a hallmark of chemoresistance in gliomas and several studies have reported that inhibition of inducible Nitric Oxide Synthase could be related to a decreased proliferation of glioma cells. The present work was to analyze the molecular effects of the acetamidine derivative compound 39 (formally CM544, N-(3-{[(1-iminioethyl)amino]methyl}benzyl) prolinamide dihydrochloride), a newly synthetized iNOS inhibitor, in a C6 rat glioma cell model. There is evidence of CM544 selective binding to the iNOS, an event that triggers the accumulation of ROS/RNS, the expression of Nrf-2 and the phosphorylation of MAPKs after 3 h of treatment. In the long run, CM544 leads to the dephosphorylation of p38 and to a massive cleavage of PARP-1, confirming the block of C6 rat glioma cell proliferation in the G1/S checkpoint and the occurrence of necrotic cell death.
Collapse
|
10
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
11
|
Altinoz MA, Elmaci İ. Targeting nitric oxide and NMDA receptor-associated pathways in treatment of high grade glial tumors. Hypotheses for nitro-memantine and nitrones. Nitric Oxide 2017; 79:68-83. [PMID: 29030124 DOI: 10.1016/j.niox.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is a devastating brain cancer with no curative treatment. Targeting Nitric Oxide (NO) and glutamatergic pathways may help as adjunctive treatments in GBM. NO at low doses promotes tumorigenesis, while at higher levels (above 300 nM) triggers apoptosis. Gliomas actively secrete high amounts of glutamate which activates EGR signaling and mediates degradation of peritumoral tissues via excitotoxic injury. Memantine inhibits NMDA-subtype of glutamate receptors (NMDARs) and induces autophagic death of glioma cells in vitro and blocks glioma growth in vivo. Nitro-memantines may exert further benefits by limiting NMDAR signaling and by delivery of NO to the areas of excessive NMDAR activity leading NO-accumulation at tumoricidal levels within gliomas. Due to the duality of NO in tumorigenesis, agents which attenuate NO levels may also act beneficial in treatment of GBM. Nitrone compounds including N-tert-Butyl-α-phenylnitrone (PBN) and its disulfonyl-phenyl derivative, OKN-007 suppress free radical formation in experimental cerebral ischemia. OKN-007 failed to show clinical efficacy in stroke, but trials demonstrated its high biosafety in humans including elderly subjects. PBN inhibits the signaling pathways of NF-κB, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX). In animal models of liver cancer and glioblastoma, OKN-007 seemed more efficient than PBN in suppression of cell proliferation, microvascular density and in induction of apoptosis. OKN-007 also inhibits SULF2 enzyme, which promotes tumor growth via versatile pathways. We assume that nitromemantines may be more beneficial concomitant with chemo-radiotherapy while nitrones alone may act useful in suppressing basal tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Meric A Altinoz
- Neuroacademy Group, Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey.
| | - İlhan Elmaci
- Neuroacademy Group, Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| |
Collapse
|
12
|
Posadas I, Alonso-Moreno C, Bravo I, Carrillo-Hermosilla F, Garzón A, Villaseca N, López-Solera I, Albaladejo J, Ceña V. Synthesis, characterization, DNA interactions and antiproliferative activity on glioblastoma of iminopyridine platinum(II) chelate complexes. J Inorg Biochem 2017; 168:46-54. [DOI: 10.1016/j.jinorgbio.2016.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
|
13
|
Resistance to DNA Damaging Agents Produced Invasive Phenotype of Rat Glioma Cells-Characterization of a New in Vivo Model. Molecules 2016; 21:molecules21070843. [PMID: 27355941 PMCID: PMC6273839 DOI: 10.3390/molecules21070843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ). Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells’ invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats’ behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.
Collapse
|
14
|
Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 2015; 574:193-203. [PMID: 26260013 DOI: 10.1016/j.gene.2015.08.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022]
Abstract
The MTT assay (to a less degree MTS, XTT or WST) is a widely exploited approach for measuring cell viability/drug cytotoxicity. MTT reduction occurs throughout a cell and can be significantly affected by a number of factors, including metabolic and energy perturbations, changes in the activity of oxidoreductases, endo-/exocytosis and intracellular trafficking. Over/underestimation of cell viability by the MTT assay may be due to both adaptive metabolic and mitochondrial reprogramming of cells subjected to drug treatment-mediated stress and inhibitor off-target effects. Previously, imatinib, rottlerin, ursolic acid, verapamil, resveratrol, genistein nanoparticles and some polypeptides were shown to interfere with MTT reduction rate resulting in inconsistent results between the MTT assay and alternative assays. Here, to test the under/overestimation of viability by the MTT assay, we compared results derived from the MTT assay with the trypan blue exclusion assay after treatment of glioblastoma U251, T98G and C6 cells with three widely used inhibitors with the known direct and side effects on energy and metabolic homeostasis - temozolomide (TMZ), a DNA-methylating agent, temsirolimus (TEM), an inhibitor of mTOR kinase, and U0126, an inhibitor of MEK1/2 kinases. Inhibitors were applied shortly as in IC50 evaluating studies or long as in studies focusing on drug resistance acquisition. We showed that over/underestimation of cell viability by the MTT assay and its significance depends on a cell line, a time point of viability measurement and other experimental parameters. Furthermore, we provided a comprehensive survey of factors that should be accounted in the MTT assay. To avoid result misinterpretation, supplementation of the tetrazolium salt-based assays with other non-metabolic assays is recommended.
Collapse
Affiliation(s)
- A A Stepanenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo str. 150, Kyiv 03680, Ukraine.
| | - V V Dmitrenko
- Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo str. 150, Kyiv 03680, Ukraine
| |
Collapse
|