1
|
Xu Y, Yang YR, Shi Q, Ward AB, Huang K, Chen X, Wang W, Yang Y. An Infectious Virus-like Particle Built on a Programmable Icosahedral DNA Framework. Angew Chem Int Ed Engl 2023; 62:e202214731. [PMID: 36377708 DOI: 10.1002/anie.202214731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Viral genomes can be compressed into a near-spherical nanochamber to form infectious particles. In order to mimic the virus morphology and packaging behavior, we invented a programmable icosahedral DNA nanoframe with enhanced rigidity and encapsulated the phiX174 bacteriophage genome. The packaging efficiency could be modulated through specific anchoring strands adjustment, and the trapped phage genome remained accessible for enzymatic operations. Moreover, the packed complex could infect Escherichia coli (E. coli) cells through bacterial uptake to produce plaques. This rigid icosahedral DNA architecture demonstrated a versatile platform to develop virus mimetic particles for convenient functional nucleic acid entrapment, manipulation and delivery.
Collapse
Affiliation(s)
- Yunyun Xu
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Yuhe R Yang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P.R. China.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Qian Shi
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kui Huang
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Xiao Chen
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Wei Wang
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| | - Yang Yang
- School of Medicine, Shanghai Jiao Tong University, Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, 1630 Dongfang Road, B17-1820, Pudong, Shanghai, 200127, P.R. China
| |
Collapse
|
2
|
Hausmann M, Lee JH, Sievers A, Krufczik M, Hildenbrand G. COMBinatorial Oligonucleotide FISH (COMBO-FISH) with Uniquely Binding Repetitive DNA Probes. Methods Mol Biol 2020; 2175:65-77. [PMID: 32681484 DOI: 10.1007/978-1-0716-0763-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decade, genome sequence databases of many species have been more and more completed so that it has become possible to further develop a recently established technique of FISH (Fluorescence In Situ Hybridization) called COMBO-FISH (COMBinatorial Oligo FISH). In contrast to standard FISH techniques, COMBO-FISH makes use of a bioinformatic search in sequence databases for probe design, so that it can be done for any species so far sequenced. In the original approach, oligonucleotide stretches of typical lengths of 15-30 nucleotides were selected in such a way that they only co-localize at the given genome target. Typical probe sets of about 20-40 stretches were used to label about 50-250 kb specifically. The probes of different lengths can be composed of purines and pyrimidines, but were often restricted to homo-purine or homo-pyrimidine probe sets because of the experimental advantage of using a protocol omitting denaturation of the target strand and triple strand binding of the probes. This allows for a better conservation of the 3D folding and arrangement of the genome. With an improved, rigorous genome sequence database analysis and sequence search according to statistical frequency and uniqueness, a novel family of probes repetitively binding to characteristic genome features like SINEs (Short Interspersed Nuclear Elements, e.g., ALU elements), LINEs (Long Interspersed Nuclear Elements, e.g., L1), or centromeres has been developed. These probes can be synthesized commercially as DNA or PNA probes with high purity and labeled by fluorescent dye molecules. Here, new protocols are described for purine-pyrimidine probes omitting heat treatment for denaturation of the target so that oligonucleotide labeling can also be combined with immune-staining by specific antibodies. If the dyes linked to the oligonucleotide stretches undergo reversible photo-bleaching (laser-induced slow blinking), the labeled cell nuclei can be further subjected to super-resolution localization microscopy for complex chromatin architecture research.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Matthias Krufczik
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Abstract
DNA fluorescence in situ hybridization (DNA FISH) has emerged as a powerful microscopy technique that allows a unique view into the composition and arrangement of the genetic material in its natural context-be it the cell nucleus in interphase, or chromosomes in metaphase spreads. The core principle of DNA FISH is the ability of fluorescently labeled DNA probes (either double- or single-stranded DNA fragments) to bind to their complementary sequences in situ in cells or tissues, revealing the location of their target as fluorescence signals detectable with a fluorescence microscope. Numerous variants and improvements of the original DNA FISH method as well as a vast repertoire of applications have been described since its inception more than 4 decades ago. In recent years, the development of many new fluorescent dyes together with drastic advancements in methods for probe generation (Boyle et al., Chromosome Res 19:901-909, 2011; Beliveau et al., Proc Natl Acad Sci U S A 109:21301-21306, 2012; Bienko et al., Nat Methods 10:122-124, 2012), as well as improvements in the resolution of microscopy technologies, have boosted the number of DNA FISH applications, particularly in the field of genome architecture (Markaki et al., Bioessays 34:412-426, 2012; Beliveau et al., Nat Commun 6:7147, 2015). However, despite these remarkable steps forward, choosing which type of DNA FISH sample preparation protocol, probe design, hybridization procedure, and detection method is best suited for a given application remains still challenging for many research labs, preventing a more widespread use of this powerful technology. Here, we present a comprehensive platform to help researchers choose which DNA FISH protocol is most suitable for their particular application. In addition, we describe computational pipelines that can be implemented for efficient DNA FISH probe design and for signal quantification. Our goal is to make DNA FISH a versatile and streamlined technique that can be easily implemented by both research and diagnostic labs.
Collapse
|
4
|
Hausmann M, Ilić N, Pilarczyk G, Lee JH, Logeswaran A, Borroni AP, Krufczik M, Theda F, Waltrich N, Bestvater F, Hildenbrand G, Cremer C, Blank M. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. Int J Mol Sci 2017; 18:E2066. [PMID: 28956810 PMCID: PMC5666748 DOI: 10.3390/ijms18102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 11/17/2022] Open
Abstract
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nataša Ilić
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold ST, Safed 1311502, Israel.
| | - Götz Pilarczyk
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Abiramy Logeswaran
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Aurora Paola Borroni
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold ST, Safed 1311502, Israel.
| | - Matthias Krufczik
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Franziska Theda
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nadine Waltrich
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Felix Bestvater
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, Universitätsmedizin Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 3-5, 68159 Mannheim, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold ST, Safed 1311502, Israel.
| |
Collapse
|
5
|
Krufczik M, Sievers A, Hausmann A, Lee JH, Hildenbrand G, Schaufler W, Hausmann M. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Int J Mol Sci 2017; 18:ijms18051005. [PMID: 28481278 PMCID: PMC5454918 DOI: 10.3390/ijms18051005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023] Open
Abstract
Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In combination with super resolution microscopy which achieves spatial resolution far beyond the Abbe Limit, it allows new insights into the nano-scaled structure and organization of the chromatin of the nucleus. To avoid nano-structural changes of the chromatin, the COMBO-FISH labelling protocol was optimized omitting heat treatment for denaturation of the target. As an example, this protocol was applied to ALU elements—dispersed short stretches of DNA which appear in different kinds in large numbers in primate genomes. These ALU elements seem to be involved in gene regulation, genomic diversity, disease induction, DNA repair, etc. By computer search, we developed a unique COMBO-FISH probe which specifically binds to ALU consensus elements and combined this DNA–DNA labelling procedure with heterochromatin immunostainings in formaldehyde-fixed cell specimens. By localization microscopy, the chromatin network-like arrangements of ALU oligonucleotide repeats and heterochromatin antibody labelling sites were simultaneously visualized and quantified. This novel approach which simultaneously combines COMBO-FISH and immunostaining was applied to chromatin analysis on the nanoscale after low-linear-energy-transfer (LET) radiation exposure at different doses. Dose-correlated curves were obtained from the amount of ALU representing signals, and the chromatin re-arrangements during DNA repair after irradiation were quantitatively studied on the nano-scale. Beyond applications in radiation research, the labelling strategy of immunostaining and COMBO-FISH with localization microscopy will also offer new potentials for analyses of subcellular elements in combination with other specific chromatin targets.
Collapse
Affiliation(s)
- Matthias Krufczik
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Annkathrin Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Jin-Ho Lee
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 3-5, 68159 Mannheim, Germany.
| | - Wladimir Schaufler
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|