1
|
Hilhorst R, van den Berg A, Boender P, van Wezel T, Kievits T, de Wijn R, Ruijtenbeek R, Corver WE, Morreau H. Differentiating Benign from Malignant Thyroid Tumors by Kinase Activity Profiling and Dabrafenib BRAF V600E Targeting. Cancers (Basel) 2023; 15:4477. [PMID: 37760447 PMCID: PMC10527361 DOI: 10.3390/cancers15184477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Differentiated non-medullary thyroid cancer (NMTC) can be effectively treated by surgery followed by radioactive iodide therapy. However, a small subset of patients shows recurrence due to a loss of iodide transport, a phenotype frequently associated with BRAF V600E mutations. In theory, this should enable the use of existing targeted therapies specifically designed for BRAF V600E mutations. However, in practice, generic or specific drugs aimed at molecular targets identified by next generation sequencing (NGS) are not always beneficial. Detailed kinase profiling may provide additional information to help improve therapy success rates. In this study, we therefore investigated whether serine/threonine kinase (STK) activity profiling can accurately classify benign thyroid lesions and NMTC. We also determined whether dabrafenib (BRAF V600E-specific inhibitor), as well as sorafenib and regorafenib (RAF inhibitors), can differentiate BRAF V600E from non-BRAF V600E thyroid tumors. Using 21 benign and 34 malignant frozen thyroid tumor samples, we analyzed serine/threonine kinase activity using PamChip®peptide microarrays. An STK kinase activity classifier successfully differentiated malignant (26/34; 76%) from benign tumors (16/21; 76%). Of the kinases analyzed, PKC (theta) and PKD1 in particular, showed differential activity in benign and malignant tumors, while oncocytic neoplasia or Graves' disease contributed to erroneous classifications. Ex vivo BRAF V600E-specific dabrafenib kinase inhibition identified 6/92 analyzed peptides, capable of differentiating BRAF V600E-mutant from non-BRAF V600E papillary thyroid cancers (PTCs), an effect not seen with the generic inhibitors sorafenib and regorafenib. In conclusion, STK activity profiling differentiates benign from malignant thyroid tumors and generates unbiased hypotheses regarding differentially active kinases. This approach can serve as a model to select novel kinase inhibitors based on tissue analysis of recurrent thyroid and other cancers.
Collapse
Affiliation(s)
- Riet Hilhorst
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | | | - Piet Boender
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Tom van Wezel
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (H.M.)
| | - Tim Kievits
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Rik de Wijn
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Rob Ruijtenbeek
- PamGene International BV, 5211 HH ‘s-Hertogenbosch, The Netherlands; (R.H.)
| | - Willem E. Corver
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (H.M.)
| | - Hans Morreau
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (H.M.)
| |
Collapse
|
2
|
Pieles O, Reichert TE, Morsczeck C. Protein kinase A is activated during bone morphogenetic protein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hormone-related protein. Arch Oral Biol 2022; 138:105409. [PMID: 35338829 DOI: 10.1016/j.archoralbio.2022.105409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
|
3
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-Han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-Qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-Wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-Xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-Shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
4
|
Xia L, Han Q, Chi C, Zhu Y, Pan J, Dong B, Huang Y, Xia W, Xue W, Sha J. Transcriptional regulation of PRKAR2B by miR-200b-3p/200c-3p and XBP1 in human prostate cancer. Biomed Pharmacother 2020; 124:109863. [PMID: 31986411 DOI: 10.1016/j.biopha.2020.109863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/02/2023] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-activated protein kinase A (PKA) pathway is profoundly implicated in Prostate cancer (PCa) progression. Previously, we showed that PRKAR2B, the type II-beta regulatory subunit of PKA, is highly expressed in castration-resistant prostate cancer (CRPC) and can induce epithelial-mesenchymal transition by activating Wnt/β-catenin signaling in PCa cells. However, the molecular mechanism of dysregulated PRKAR2B expression pattern is still largely unknown. In this study, we found that the mutation, copy number alteration, and methylation status of PRKAR2B gene have no correlation with its expression level in PCa. Then, we identified two microRNAs (miR-200b-3p and miR-200c-3p) to be critical regulators of PRKAR2B expression in PCa. Notably, miR-200b-3p and miR-200c-3p expression were significantly downregulated in metastatic CRPC and negatively correlated with the expression level of PRKAR2B in PCa tissues. Moreover, we characterized X-Box Binding Protein 1 (XBP1) as a key transcription factor responsible for PRKAR2B expression in PCa. Importantly, miR-200b-3p/200c-3p or XBP1 knockdown inhibited PCa cell proliferation and promoted cell apoptosis and these inhibitory roles could be largely restored by PRKAR2B, suggesting that PRKAR2B is a functional mediator of miR-200b-3p, miR-200c-3p, and XBP1 in PCa. Collectively, our study firstly identified miR-200b-3p/200c-3p and XBP1 as the critical upstream regulators of PRKAR2B in PCa and provided novel insights to PRKAR2B-driven PCa progression.
Collapse
Affiliation(s)
- Lei Xia
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Han
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chenfei Chi
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yiran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Weiliang Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jianjun Sha
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Creating a potential diagnostic for prostate cancer risk stratification (InformMDx™) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7). Clin Sci (Lond) 2019; 133:269-286. [DOI: 10.1042/cs20180519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Increased PSA-based screening for prostate cancer has resulted in a growing number of diagnosed cases. However, around half of these are ‘indolent’, neither metastasizing nor leading to disease specific death. Treating non-progressing tumours with invasive therapies is currently regarded as unnecessary over-treatment with patients being considered for conservative regimens, such as active surveillance (AS). However, this raises both compliance and protocol issues. Great clinical benefit could accrue from a biomarker able to predict long-term patient outcome accurately at the time of biopsy and initial diagnosis. Here we delineate the translation of a laboratory discovery through to the precision development of a clinically validated, novel prognostic biomarker assay (InformMDx™). This centres on determining transcript levels for phosphodiesterase-4D7 (PDE4D7), an enzyme that breaks down cyclic AMP, a signalling molecule intimately connected with proliferation and androgen receptor function. Quantifiable detection of PDE4D7 mRNA transcripts informs on the longitudinal outcome of post-surgical disease progression. The risk of post-surgical progression increases steeply for patients with very low ‘PDE4D7 scores’, while risk decreases markedly for those patients with very high ‘PDE4D7 scores’. Combining clinical risk variables, such as the Gleason or CAPRA (Cancer of the Prostate Risk Assessment) score, with the ‘PDE4D7 score’ further enhances the prognostic power of this personalized, precision assessment. Thus the ‘PDE4D7 score’ has the potential to define, more effectively, appropriate medical intervention/AS strategies for individual prostate cancer patients.
Collapse
|
6
|
Photoelectrochemical determination of the activity of protein kinase A by using g-C3N4 and CdS quantum dots. Mikrochim Acta 2018; 185:541. [DOI: 10.1007/s00604-018-3076-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
|
7
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|