1
|
Zheng C, Wang Y, Bi B, Zhou W, Cao X, Zhang C, Lu W, Sun Y, Qu J, Lv W. Gallic acid ameliorates endometrial hyperplasia through the inhibition of the PI3K/AKT pathway and the down-regulation of cyclin D1 expression. J Pharmacol Sci 2024; 155:1-13. [PMID: 38553133 DOI: 10.1016/j.jphs.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Gallic acid (GA) is an organic compound with phenolic properties that occurs naturally and can be found in Guizhi Fuling capsules, showcasing a wide range of biological functionalities. PURPOSE The objective of this study was to examine the influence of GA on endometrial hyperplasia (EH) and elucidate its underlying mechanism. METHODS Initially, the induction of EH was achieved by administering estradiol to mice via continuous subcutaneous injection for a duration of 21 days. Concurrently, GA treatment was administered, and subsequently, the uterine tissue structure was assessed using hematoxylin and eosin (H&E) staining. Following this, the proliferation of human endometrial cells treated by GA was determined utilizing the CCK-8 method. Furthermore, network pharmacology and single-cell-RNA-seq data were employed to identify the target of GA action. In addition, we will employ immunofluorescence (IF), immunohistochemistry (IHC), flow cytometry, western blot and RT-qPCR methodologies to investigate the impact of GA on the expression level of cyclin D1, PI3K, p-PI3K, AKT, p-AKT. RESULTS GA treatment ameliorated histopathological alterations in the uterus and suppress proliferation. Estradiol stimulation can activate the PI3K/AKT pathway, leading to up-regulation of cyclin D1 expression, whereas GA treatment results in down-regulation of its expression. CONCLUSIONS The expression of cyclin D1 is down-regulated by GA through the inhibition of the PI3K/AKT pathway, effectively mitigating estradiol-induced EH in mice.
Collapse
Affiliation(s)
- Caijie Zheng
- The Second Clinical School of Zhejiang Chinese Medicine University, Hangzhou, 310053, China
| | - Yi Wang
- Colon and Rectal Surgery, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Beilei Bi
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wentian Lu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210029, China.
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, China.
| |
Collapse
|
2
|
Hu BC, Zhu JW, Wu GH, Cai JJ, Yang X, Shao ZQ, Zheng Y, Lai JM, Shen Y, Yang XH, Liu JQ, Sun RH, Zhu HP, Ye XM, Mo SJ. Auto- and paracrine rewiring of NIX-mediated mitophagy by insulin-like growth factor-binding protein 7 in septic AKI escalates inflammation-coupling tubular damage. Life Sci 2023; 322:121653. [PMID: 37011875 DOI: 10.1016/j.lfs.2023.121653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
AIMS Inflammation-coupling tubular damage (ICTD) contributes to pathogenesis of septic acute kidney injury (AKI), in which insulin-like growth factor-binding protein 7 (IGFBP-7) serves as a biomarker for risk stratification. The current study aims to discern how IGFBP-7 signalling influences ICTD, the mechanisms that underlie this process and whether blockade of the IGFBP-7-dependent ICTD might have therapeutic value for septic AKI. MATERIALS AND METHODS In vivo characterization was carried out in B6/JGpt-Igfbp7em1Cd1165/Gpt mice subjected to cecal ligation and puncture (CLP). Transmission electron microscopy, immunofluorescence, flow cytometry, immunoblotting, ELISA, RT-qPCR and dual-luciferase reporter assays were used to determine mitochondrial functions, cell apoptosis, cytokine secretion and gene transcription. KEY FINDINGS ICTD augments the transcriptional activity and protein secretion of tubular IGFBP-7, which enables an auto- and paracrine signalling via deactivation of IGF-1 receptor (IGF-1R). Genetic knockout (KO) of IGFBP-7 provides renal protection, improves survival and resolves inflammation in murine models of cecal ligation and puncture (CLP), while administering recombinant IGFBP-7 aggravates ICTD and inflammatory invasion. IGFBP-7 perpetuates ICTD in a NIX/BNIP3-indispensable fashion through dampening mitophagy that restricts redox robustness and preserves mitochondrial clearance programs. Adeno-associated viral vector 9 (AAV9)-NIX short hairpin RNA (shRNA) delivery ameliorates the anti-septic AKI phenotypes of IGFBP-7 KO. Activation of BNIP3-mediated mitophagy by mitochonic acid-5 (MA-5) effectively attenuates the IGFBP-7-dependent ICTD and septic AKI in CLP mice. SIGNIFICANCE Our findings identify IGFBP-7 is an auto- and paracrine manipulator of NIX-mediated mitophagy for ICTD escalation and propose that targeting the IGFBP-7-dependent ICTD represents a novel therapeutic strategy against septic AKI.
Collapse
Affiliation(s)
- Bang-Chuan Hu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Jing-Wen Zhu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Guo-Hua Wu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, Zhejiang, PR China
| | - Juan-Juan Cai
- Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Zi-Qiang Shao
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Yang Zheng
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Jun-Mei Lai
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China; Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Ye Shen
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China; Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Xiang-Hong Yang
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Jing-Quan Liu
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Ren-Hua Sun
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Hai-Ping Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiang-Ming Ye
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China; Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Shi-Jing Mo
- Emergency and Intensive Care Unit Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China; Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China; Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China.
| |
Collapse
|
3
|
Bu Y, Hao J, He J, Li X, Liu Y, Ma L. Tumor-promoting properties of enolase-phosphatase 1 in breast cancer via activating the NF-κB signaling pathway. Mol Biol Rep 2023; 50:993-1004. [PMID: 36378417 DOI: 10.1007/s11033-022-08066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evidence suggests that enolase-phosphatase 1 (ENOPH1) is involved in the progression of some certain types of cancers and acts as an oncogenic factor in tumor progression. The present study aimed to identify the central role of ENOPH1 in the progression of breast cancer (BC), a highly proliferative and aggressive disease. METHODS AND RESULTS ENOPH1 expression in BC tissues was explored based on the online resource and 40 paired fresh BC and para-carcinoma samples. Functional assays were performed to evaluate the biological effect of ENOPH1 on cell proliferation and migration in ENOPH1-silenced or overexpressing BC cell lines. Blockade of NF-κB by BAY11-7082 was performed to evaluate whether ENOPH1 exerted tumor-promoting properties via regulating the NF-κB signaling pathway. Results of the present study demonstrated that ENOPH1 expression was profoundly upregulated in BC tissues compared with adjacent breast tissues, and ENOPH1 expression was associated with cancer stage, node metastasis status, and overall survival. Functional assays demonstrated that ENOPH1 overexpression significantly accelerated BC cell proliferation, migration, and invasion, while genetic knockdown of ENOPH1 yielded the opposite effects. Mechanistically, ENOPH1 activated the NF-κB pathway, as evidenced by increased expression of NF-κB downstream genes and enhanced NF-κB p65 nuclear translocation. Furthermore, the oncogenic properties of ENOPH1 in proliferation, migration, and invasion were restrained following inhibition of the NF-κB signaling pathway. CONCLUSIONS These findings indicated the significance of ENOPH1 in promoting cell proliferation and invasion, mainly through activating the NF-κB pathway, suggesting that ENOPH1 might be an attractive prognostic factor and a potential target for BC therapy.
Collapse
Affiliation(s)
- Yuhui Bu
- Breast Center, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, China.,Breast Center, Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Xiaolong Li
- Department of Breast Surgery, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yinfeng Liu
- Department of Breast Surgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Li Ma
- Breast Center, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Ni Y, Wu GH, Cai JJ, Zhang R, Zheng Y, Liu JQ, Yang XH, Yang X, Shen Y, Lai JM, Ye XM, Mo SJ. Tubule-mitophagic secretion of SerpinG1 reprograms macrophages to instruct anti-septic acute kidney injury efficacy of high-dose ascorbate mediated by NRF2 transactivation. Int J Biol Sci 2022; 18:5168-5184. [PMID: 35982894 PMCID: PMC9379417 DOI: 10.7150/ijbs.74430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
High-dose ascorbate confers tubular mitophagy responsible for septic acute kidney injury (AKI) amelioration, yet its biological roles in immune regulation remain poorly understood. Methods: The role of tubular mitophagy in macrophage polarization upon high-dose ascorbate treatment was assessed by fluorescence-activated cell sorter analysis (FACS) in vitro and by immunofluorescence in AKI models of LPS-induced endotoxemia (LIE) from Pax8-cre; Atg7flox/flox mice. The underlying mechanisms were revealed by RNA-sequencing, gene set enrichment analysis (GSEA), luciferase reporter, chromatin immunoprecipitation (ChIP) and adeno-associated viral vector serotype 9 (AAV9) delivery assays. Results: High-dose ascorbate enables conversion of macrophages from a pro-inflammatory M1 subtype to an anti-inflammatory M2 subtype in murine AKI models of LIE, leading to decreased renal IL-1β and IL-18 production, reduced mortality and alleviated tubulotoxicity. Blockade of tubular mitophagy abrogates anti-inflammatory macrophages polarization under the high-dose ascorbate-exposed coculture systems. Similar abrogations are verified in LIE mice with tubular epithelium-specific ablation of Atg7, where the high-dose ascorbate-inducible renal protection and survival improvement are substantially weaker than their control littermates. Mechanistically, high-dose ascorbate stimulates tubular secretion of serpin family G member 1 (SerpinG1) through maintenance of mitophagy, for which nuclear factor-erythroid 2 related factor 2 (NRF2) transactivation is required. SerpinG1 perpetuates anti-inflammatory macrophages to prevent septic AKI, while kidney-specific disruption of SerpinG1 by adeno-associated viral vector serotype 9 (AAV9)-short hairpin RNA (shRNA) delivery thwarts the anti-inflammatory macrophages polarization and anti-septic AKI efficacy of high-dose ascorbate. Conclusion: Our study identifies SerpinG1 as an intermediate of tubular mitophagy-orchestrated myeloid function during septic AKI and reveals a novel rationale for ascorbate-based therapy.
Collapse
Affiliation(s)
- Yin Ni
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Guo-Hua Wu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, Zhejiang, P.R.China
| | - Juan-Juan Cai
- Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Run Zhang
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Yang Zheng
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Jing-Quan Liu
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Xiang-Hong Yang
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Ye Shen
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Jun-Mei Lai
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Xiang-Ming Ye
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Shi-Jing Mo
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| |
Collapse
|
5
|
LncRNA Rian reduces cardiomyocyte pyroptosis and alleviates myocardial ischemia-reperfusion injury by regulating by the miR-17-5p/CCND1 axis. Hypertens Res 2022; 45:976-989. [PMID: 35264782 DOI: 10.1038/s41440-022-00884-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a pathological process characterized by cardiomyocyte death. Long noncoding RNAs (lncRNAs) have been shown to be dysregulated in the course of MIRI. Accordingly, the current study investigated the mechanism of lncRNA Rian in MIRI-induced cardiomyocyte pyroptosis. First, a murine model of MIRI was established by using the left anterior descending (LAD) coronary artery ligation method. Cardiac function and myocardial histopathological changes were evaluated by echocardiography and hematoxylin and eosin staining. Then, a cell model of MIRI was established by oxygen-glucose deprivation/reoxygenation (OGD/R), followed by analysis of NLRP3, cleaved caspase-1, and GSDMD-N levels by western blotting. The levels of IL-1β, IL-18, TNF-α, and IL-10 were measured using ELISA. LncRNA Rian, miR-17-5p, and CCND1 expression in myocardial tissues and OGD/R cells were examined using RT-qPCR. Finally, the binding relationships between Rian and miR-17-5p and miR-17-5p and CCND1 were validated with the help of dual-luciferase and RNA pull-down assays. Rian was poorly expressed in MIRI mice and OGD/R cells. LncRNA Rian overexpression reduced cardiomyocyte pyroptosis in vivo and in vitro, as indicated by decreased NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, IL-18, and TNF-α levels and increased IL-10 levels. Furthermore, Rian bound to miR-17-5p and promoted CCND1 transcription. Notably, miR-17-5p overexpression or CCND1 silencing reversed the inhibitory effect of Rian overexpression on cardiomyocyte pyroptosis. Collectively, our findings indicate that Rian overexpression reduces cardiomyocyte pyroptosis and alleviates MIRI through the miR-17-5p/CCND1 axis.
Collapse
|
6
|
Wang W, Gu XH, Li M, Cheng ZJ, Tian S, Liao Y, Liu X. MicroRNA-155-5p Targets SKP2, Activates IKKβ, Increases Aβ Aggregation, and Aggravates a Mouse Alzheimer Disease Model. J Neuropathol Exp Neurol 2021; 81:16-26. [PMID: 34865098 DOI: 10.1093/jnen/nlab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) pathway and inhibitor of NF-κB kinase β (IKKβ) are involved in Alzheimer disease (AD) pathogenesis. This study explored the mechanisms underlying IKKβ-mediated Aβ aggregation and neuron regeneration in APP.PS1 mice. Adenoviral transduction particles were injected into the hippocampal CA1 region of the mice to knock down or inhibit target genes. Morris water maze was performed to evaluate the cognitive function of the mice. Aβ deposition was determined by histological examination. sh-IKKβ plasmids and microRNA (miR)-155-5p inhibitor were transfected into Aβ1-42-induced N2a cells. The expressions of AD-related proteins were detected by Western blot. The interaction between S-phase kinase-associated protein 2 (SKP2) and IKKβ was assessed by co-immunoprecipitation. IKKβ knockdown (KD) and miR-155-5p inhibition ameliorated cognitive impairment, improved neuron regeneration, and attenuated Aβ deposition in APP/PS1 mice. SKP2 KD aggravated cognitive impairment, inhibited neuron regeneration, and promoted Aβ deposition in the mice. SKP2 regulated the stability of IKKβ protein via ubiquitination. MiR-155-5p regulates Aβ deposition and the expression of Aβ generation-related proteins in N2a cells via targeting SKP2. These results indicate that the miR-155-5p/SKP2/IKKβ axis was critical for pathogenesis in this AD model and suggest the potential of miR-155-5p as a target for AD treatment.
Collapse
Affiliation(s)
- Wei Wang
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xun-Hu Gu
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Li
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Juan Cheng
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Sheng Tian
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Liao
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xu Liu
- From the Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
7
|
Ni Y, Hu BC, Wu GH, Shao ZQ, Zheng Y, Zhang R, Jin J, Hong J, Yang XH, Sun RH, Liu JQ, Mo SJ. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics 2021; 11:9431-9451. [PMID: 34646379 PMCID: PMC8490525 DOI: 10.7150/thno.61902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/05/2021] [Indexed: 12/29/2022] Open
Abstract
The immunosuppressive, inflammatory microenvironment orchestrated by neutrophil extracellular traps (NETs) plays a principal role in pathogenesis of sepsis. Fibroblast growth factor-inducible molecule 14 (Fn14) has been established as a potential target for septic acute kidney injury (AKI), making further therapeutic benefits from combined NETs and Fn14 blockade possible. Methods: The concurrence of NETs and Fn14 in mice and patients with septic AKI were assessed by immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and in silico studies. Survival, histopathological and biochemical analyses of wild-type and PAD4-deficient CMV-Cre; PAD4 fl/fl mice with septic AKI were applied to evaluate the efficacy of either pharmacological or genetic NETs interruption in combination with Fn14 blockade. Molecular mechanisms underlying such effects were determined by CRISPR technology, fluorescence-activated cell sorter analysis (FACS), cycloheximide (CHX) pulse-chase, luciferase reporter and chromatin immunoprecipitation (ChIP) assay. Results: NETs formation is concurred with Fn14 upregulation in murine AKI models of abdominal, endotoxemic, multidrug-resistant sepsis as well as in serum samples of patients with septic AKI. Pharmacological or genetic interruption of NETs formation synergizes with ITEM-2, a monoclonal antibody (mAb) of Fn14, to prolong mice survival and provide renal protection against abdominal sepsis, the effects that could be abrogated by elimination of macrophages. Interrupting NETs formation predominantly perpetuates infiltration and survival of efferocytic growth arrest-specific protein 6+ (GAS6+) macrophages in combination with ITEM-2 therapy and enhances transcription of tubular cell-intrinsic Fn14 in a DNA methyltransferase 3a (DNMT3a)-independent manner through dismantling the proteasomes-mediated turnover of homeobox protein Hox-A5 (HOXA5) upon abdominal sepsis challenge or LPS stimuli. Pharmacological NETs interruption potentiates the anti-septic AKI efficacy of ITEM-2 in murine models of endotoxemic and multidrug-resistant sepsis. Conclusion: Our preclinical data propose that interrupting NETs formation in combination with Fn14 mAb might be a feasible therapeutic strategy for septic AKI.
Collapse
Affiliation(s)
- Yin Ni
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Bang-Chuan Hu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Guo-Hua Wu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, Zhejiang, P.R. China
| | - Zi-Qiang Shao
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Yang Zheng
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Run Zhang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Jun Jin
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Jun Hong
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Xiang-Hong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Ren-Hua Sun
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Jin-Quan Liu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| | - Shi-Jing Mo
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R. China
| |
Collapse
|
8
|
Chen ZD, Hu BC, Shao XP, Hong J, Zheng Y, Zhang R, Shao ZQ, Liu JQ, Yang XH, Sun RH, Mo SJ. Ascorbate uptake enables tubular mitophagy to prevent septic AKI by PINK1-PARK2 axis. Biochem Biophys Res Commun 2021; 554:158-165. [PMID: 33798942 DOI: 10.1016/j.bbrc.2021.03.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Ascorbate (Vitamin C) has been proposed as a promising therapeutic agent against sepsis in clinical trials, but there is little experimental evidence on its anti-septic efficacy. We report that Toll-like receptor 4 (TLR4) activation by LPS stimuli augments ascorbate uptake in murine and human tubular cells through upregulation of two ascorbate transporters SVCT-1 and -2 mediated by Fn14/SCFFbxw7α cascade. Ascorbate restriction, or knockout of SVCT-1 and -2, the circumstance reminiscent to blockade of ascorbate uptake, endows tubular cells more vulnerable to the LPS-inducible apoptosis, whereas exogenous administration of ascorbate overrides the ruin execution, for which the PINK1-PARK2, rather than BNIP3-NIX axis is required. Ascorbate increases, while SVCT-1 and -2 knockout or ascorbate restriction dampens tubular mitophagy upon LPS stimuli. Treatment of endotoxemic mice with high-dose ascorbate confers mitophagy and substantial protection against mortality and septic acute kidney injury (AKI). Our work provides a rationale for clinical management of septic AKI with high doses of ascorbate.
Collapse
Affiliation(s)
- Zhi-Dong Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Huzhou Normal College, Huzhou, 313000, Zhejiang, PR China
| | - Bang-Chuan Hu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Xue-Ping Shao
- Department of Intensive Care Unit, The First Affiliated Hospital of Huzhou Normal College, Huzhou, 313000, Zhejiang, PR China
| | - Jun Hong
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Yang Zheng
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Run Zhang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Zi-Qiang Shao
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Jin-Quan Liu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Xiang-Hong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Ren-Hua Sun
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China
| | - Shi-Jing Mo
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, PR China.
| |
Collapse
|
9
|
Zheng W, Li Y, Su Z, Zhang J, Shi F, Liang W. EIF3H knockdown inhibits malignant melanoma through regulating cell proliferation, apoptosis and cell cycle. Exp Cell Res 2021; 402:112488. [PMID: 33508274 DOI: 10.1016/j.yexcr.2021.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Malignant melanoma (MM) causes 80% of skin cancer-related deaths and becomes the most lethal type of skin cancer. The molecular mechanism of MM is still not clear. This study aimed to reveal the relationship between MM and EIF3H. Clinical specimens were collected to preliminarily explore the role of EIF3H in MM. MM cell lines with EIF3H knockdown were constructed for investigating the effects of EIF3H on cell proliferation, apoptosis, cell cycle and cell motility. Mice xenograft model was constructed for verification in vivo. We found that EIF3H was obviously upregulated in MM tissues compared with normal skin tissues, which was correlated with tumor stage and risk of lymphatic metastasis. The in vitro results indicated that silencing EIF3H in MM cells could significantly suppress cell proliferation, promote cell apoptosis and induce cell cycle arrest. Moreover, EIF3H knockdown significantly restrained cell motility through regulating EMT-related proteins. The effects of EIF3H knockdown were also verified in mice xenograft model, which were represented by slower growth rate, smaller volume and lighter weight of tumors. Therefore, EIF3H was identified as a critical factor in the development and progression of MM which may be used as a novel therapeutic target in the treatment of MM.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Li
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Su
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fen Shi
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiqiang Liang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
11
|
Kratimenos P, Goldstein EZ, Koutroulis I, Knoblach S, Jablonska B, Banerjee P, Malaeb SN, Bhattacharya S, Almira-Suarez MI, Gallo V, Delivoria-Papadopoulos M. Epidermal Growth Factor Receptor Inhibition Reverses Cellular and Transcriptomic Alterations Induced by Hypoxia in the Neonatal Piglet Brain. iScience 2020; 23:101766. [PMID: 33294779 PMCID: PMC7683340 DOI: 10.1016/j.isci.2020.101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca2+/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR blockade inhibited CaMKIV activation, attenuated neuronal loss, increased oligodendrocyte proliferation, and reversed HX-induced astrogliosis. We performed for the first time high-throughput transcriptomic analysis of the piglet cortex to define molecular responses to HX and to uncover genes specifically involved in EGFR signaling in piglet and human brain injury. Our results indicate that specific molecular responses modulated by EGFR may be targeted as a therapeutic strategy for HX injury in the neonatal brain.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Department of Pediatrics, Division of Neonatology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-602-4889, USA
- Corresponding author
| | - Evan Z. Goldstein
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Susan Knoblach
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Payal Banerjee
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - Shadi N. Malaeb
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Surajit Bhattacharya
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - M. Isabel Almira-Suarez
- Department of Pathology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Corresponding author
| | | |
Collapse
|
12
|
Hu BC, Wu GH, Shao ZQ, Zheng Y, Liu JQ, Zhang R, Hong J, Yang XH, Sun RH, Mo SJ. Redox DAPK1 destabilizes Pellino1 to govern inflammation-coupling tubular damage during septic AKI. Am J Cancer Res 2020; 10:11479-11496. [PMID: 33052227 PMCID: PMC7546007 DOI: 10.7150/thno.49870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Tubular damage initiated by inflammatory response and ischemic/hypoxic stress is a hallmark of septic acute kidney injury (AKI), albeit the molecular mechanism coupling the two events remains unclear. We investigated the intrinsic nature of tubular damage with respect to inflammatory/hypoxic stress during septic AKI. Methods: The apoptotic response of tubular cells to LPS stimuli was analyzed before and after hypoxia exposure. Cellular ubiquitination, co-immunoprecipitation, GST-pulldown, in vitro protein kinase assay, immunofluorescence and CRISPR technology were adopted to determine the molecular mechanism underlying this process. In vivo characterization was performed in wild-type and DAPK1-/- mice models of cecal ligation and puncture (CLP). Results: We found that the MyD88-dependent inflammatory response couples to tubular damage during LPS stimuli under hypoxia in a Fn14/SCFFbxw7α-dispensable manner via recruitment of caspase-8 with TRIF-RIP1 signalosome mediated by DAPK1, which directly binds to and phosphorylates Pellino1 at Ser39, leading to Pellino1 poly-ubiquitination and turnover. Either pharmacological deactivation or genetic ablation of DAPK1 makes tubular cells refractory to the LPS-induced damage in the context of hypoxia, while kinase activity of DAPK1 is essential for ruin execution. Targeting DAPK1 effectively protects mice against septic AKI and potentiates the efficacy of a MyD88 homodimerization inhibitor, ST2825. Conclusion: Our findings provide a rationale for the mechanism whereby inflammation intersects with hypoxic tubular damage during septic AKI through a previously unappreciated role of DAPK1-inducible Ser39 phosphorylation in Pellino1 turnover and underscore that combined targeting DAPK1 and MyD88 might be a feasible strategy for septic AKI management.
Collapse
|
13
|
MicroRNA-19a Targets Fibroblast Growth Factor-Inducible Molecule 14 and Prevents Tubular Damage in Septic AKI. Anal Cell Pathol (Amst) 2020; 2020:2894650. [PMID: 32670778 PMCID: PMC7349421 DOI: 10.1155/2020/2894650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor-inducible molecule 14 (Fn14) plays a principal role in triggering tubular damage during septic acute kidney injury (AKI). Here, we explore the mechanism underlying Fn14 deregulation in septic AKI. We identify Fn14 as a bona fide target of miR-19a, which directly binds to 3′ UTR of Fn14 for repression independent of cylindromatosis (CYLD), the deubiquitinase (DUB) downstream of miR-19a, and thereby antagonizes the LPS-induced tubular cell apoptosis. Genetic ablation of Fn14, but not of CYLD, abolishes the ability of miR-19a to antagonize the tubular apoptosis by lipopolysaccharide (LPS). In mice, systemic delivery of miR-19a confers protection against septic AKI. Our findings implicate that miR-19a may serve as a promising therapeutic candidate in the prevention of septic AKI.
Collapse
|
14
|
Nuclear Factor κB Signaling and Its Related Non-coding RNAs in Cancer Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:208-217. [PMID: 31841993 PMCID: PMC6920321 DOI: 10.1016/j.omtn.2019.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Nuclear factor κB (NF-κB) acts as a nuclear factor that is composed of five main subunits. It is a pluripotent and crucial dimer transcription factor that has a close relationship with many serious illnesses, especially its influences on cell proliferation, inflammation, and cancer initiation and progression. NF-κB acts as part of the signaling pathway and determines its effect on the expression of several other genes, such as epidermal growth factor receptor (EGFR), p53, signal transducer and activator of transcription 3 (STAT3), and non-coding RNA (ncRNA). Continuous activation of the NF-κB signaling pathway has been seen in many cancer types. While the NF-κB signaling pathway is tightly regulated in physiological settings, quite frequently it is constitutively activated in cancer, and the molecular biology mechanism underlying the deregulated activation of NF-κB signaling remains unclear. In this review, we discuss the regulatory role and possible clinical significance of ncRNA (microRNA [miRNA] and long non-coding RNA [lncRNA]) in NF-κB signaling in cancer, including in the conversion of inflammation to carcinogenesis. Non-coding RNA plays an essential and complex role in the NF-κB signaling pathway. NF-κB activation can also induce the ncRNA status. Targeting NF-κB signaling by ncRNA is becoming a promising strategy of drug development and cancer treatment.
Collapse
|
15
|
Zheng X, Lei B, Lin Y, Sui M, Zhang M, Zhuang Z, Dong J, Jin D, Yan T. Long noncoding RNA MEG3 silencing protects against hypoxia‐induced pheochromocytoma‐12 cell injury through inhibition of TIMP2 promoter methylation. J Cell Physiol 2019; 235:1649-1662. [PMID: 31392726 DOI: 10.1002/jcp.29085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Xiu‐Yuan Zheng
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Bing‐Xi Lei
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Yang‐Yang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Ming‐Hong Sui
- Department of Rehabilitation Medicine, Shenzhen Nanshan People's Hospital (The Sixth People's Hospital of Shenzhen) Shenzhen University Shenzhen P.R. China
| | - Ma‐Lan Zhang
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Zhi‐Qiang Zhuang
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Jun‐Tao Dong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Dong‐Mei Jin
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| | - Tie‐Bin Yan
- Department of Rehabilitation Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou P.R. China
| |
Collapse
|
16
|
Mo SJ, Zhang W, Liu JQ, Chen MH, Xu L, Hong J, Li Q, Yang XH, Sun RH, Hu BC. Regulation of Fn14 stability by SCFFbxw7α during septic acute kidney injury. Am J Physiol Renal Physiol 2019; 316:F1273-F1281. [PMID: 31017010 DOI: 10.1152/ajprenal.00627.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute kidney injury (AKI) initiated by sepsis remains a thorny problem despite recent advancements in its clinical management. Having been found to be activated during AKI, fibroblast growth factor-inducible molecule 14 (Fn14) may be a potential therapeutic target because of its involvement in the molecular basis of injury. Here, we report that LPS induces apoptosis of mouse cortical tubule cells mediated by Fn14, for which simultaneous Toll-like receptor (TLR)4 activation is required. Mechanistically, TLR4 activation by lipopolysaccharide, through disassociating E3 ligase SCFFbxw7α from Fn14, dismantles Lys48-linked polyubiquitination of Fn14 and stabilizes it. Pharmacological deactivation of Fn14 with monoclonal antibody ITEM-2 provides effective protection against lethal sepsis and AKI in mice. Our study underscores an adaptive mechanism whereby TLR4 regulates SCFFbxw7α-dependent Fn14 stabilization during inflammatory tubular damage and further supports investigation of targeting Fn14 in clinical trials of patients with septic AKI.
Collapse
Affiliation(s)
- Shi-Jing Mo
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing-Quan Liu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Min-Hua Chen
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liang Xu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Hong
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qian Li
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiang-Hong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ren-Hua Sun
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bang-Chuan Hu
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Song YK, Hu BC, Xu L, Liu JQ, Chen X, Zheng Y, Chen MH, Wang JZ, Sun RH, Mo SJ. Productive transcription of miR-124-3p by RelA and RNA polymerase II directs RIP1 ubiquitination-dependent apoptosis resistance during hypoxia. Exp Cell Res 2019; 378:21-31. [DOI: 10.1016/j.yexcr.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
18
|
Abstract
Olfactory receptors are expressed by different cell types throughout the body and regulate physiological cell functions beyond olfaction. In particular, the olfactory receptor OR2AT4 has been shown to stimulate keratinocyte proliferation in the skin. Here, we show that the epithelium of human hair follicles, particularly the outer root sheath, expresses OR2AT4, and that specific stimulation of OR2AT4 by a synthetic sandalwood odorant (Sandalore®) prolongs human hair growth ex vivo by decreasing apoptosis and increasing production of the anagen-prolonging growth factor IGF-1. In contrast, co-administration of the specific OR2AT4 antagonist Phenirat® and silencing of OR2AT4 inhibit hair growth. Together, our study identifies that human hair follicles can engage in olfactory receptor-dependent chemosensation and require OR2AT4-mediated signaling to sustain their growth, suggesting that olfactory receptors may serve as a target in hair loss therapy. Increasing evidence suggest that olfactory receptors can carry additional functions besides olfaction. Here, Chéret et al. show that stimulation of the olfactory receptor ORT2A4 by the odorant Sandalore® stimulates growth of human scalp hair follicles ex vivo, suggesting the use of ORT2A4-targeting odorants as hair growth-promoting agents.
Collapse
|
19
|
Liu SM, Xiao ZF, Li X, Zhao YN, Wu XM, Han J, Chen B, Li JY, Fan CX, Xu B, Xue XY, Xue WW, Yang Y, Dai JW. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury. CNS Neurosci Ther 2018; 25:375-385. [PMID: 30155986 DOI: 10.1111/cns.13056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
AIMS Neural stem cells (NSCs) in the adult mammalian spinal cord are activated in response to spinal cord injury (SCI); however, mechanisms modulating this process are not clear. Here, we noticed SCI elevated expression of vascular endothelial growth factor (VEGF) and we aimed to validate the roles of VEGF in NSCs activation after SCI and investigated the related signals during the process. METHODS In vitro we detected whether VEGF promoted spinal cord NSCs proliferation and investigated the involved signals; In vivo, we injected VEGF into rat spinal cord to check the NSCs activation. RESULTS In vitro, VEGF triggered spinal cord NSCs proliferation and maintained self-renewal. Further investigations demonstrated VEGF transactivated epidermal growth factor receptor (EGFR) through VEGF receptor 2 (VEGFR2) to promote spinal cord NSCs proliferation. In vivo, we injected VEGF into spinal cord by laminectomy to confirm the roles of VEGF-VEGFR2-EGFR signals in NSCs activation. VEGF significantly elevated the number of activated NSCs and increased EGFR phosphorylation. In contrast, intraspinal injection of specific inhibitors targeting EGFR and VEGFR2 decreased NSCs activation after SCI. Our results demonstrate that VEGF-VEGFR2-EGFR axis is important for NSCs activation after SCI, providing new insights into the mechanisms of spinal cord NSCs activation postinjury.
Collapse
Affiliation(s)
- Su-Mei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Zhi-Feng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Nan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xian-Ming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Yin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Xia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Wu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
20
|
Zhang W, Lu Y, Li X, Zhang J, Zheng L, Zhang W, Lin C, Lin W, Li X. CDCA3 promotes cell proliferation by activating the NF-κB/cyclin D1 signaling pathway in colorectal cancer. Biochem Biophys Res Commun 2018; 500:196-203. [PMID: 29627567 DOI: 10.1016/j.bbrc.2018.04.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Cell division cycle associated 3 (CDCA3) is required for mitotic entry, and mediates the degradation of the inhibitory kinase Wee1. New evidence suggests CDCA3 plays a role in tumor promotion. However, little is known about the relevance of CDCA3 in colorectal cancer(CRC), especially in the regulation of NF-κB activity. In this study, we found that colorectal tumors significantly expressed more CDCA3 than non-cancer tissues. In addition, CDCA3 promoted CRC cell proliferation in vitro. Furthermore, downregulation of CDCA3 not only induced cell cycle arrest but also facilitated apoptosis. Mechanistically, CDCA3 activates the NF-κB signaling pathway by interacting with TRAF2 in CRC. Together, these results define a tumor-supportive role for CDCA3, which may also provide a new promising strategy for treating CRC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Aguilar-Alonso F, Whiting AL, Kim YJ, Bernal F. Biophysical and biological evaluation of optimized stapled peptide inhibitors of the linear ubiquitin chain assembly complex (LUBAC). Bioorg Med Chem 2017; 26:1179-1188. [PMID: 29246782 DOI: 10.1016/j.bmc.2017.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Linear ubiquitylation, in which ubiquitin units are covalently linked through N- and C-terminal amino acids, is a unique cellular signaling mechanism. This process is controlled by a single E3 ubiquitin ligase, the linear ubiquitin chain assembly complex (LUBAC), which is composed of three proteins - HOIL-1L, HOIP and SHARPIN. LUBAC is involved in the activation of the canonical NF-κB pathway and has been linked to NF-κB dependent malignancies. In this work, we present HOIP-based stapled alpha-helical peptides designed to inhibit LUBAC through the disruption of the HOIL-1L-HOIP interaction and loss of the functional complex. We find our HOIP peptides to be active LUBAC ubiquitylation inhibitors in vitro, though through interaction with HOIP rather than HOIL. Active peptides were shown to have inhibitory effects on cell viability, reduced NF-κB activity and decreased production of NF-κB related gene products. This work further demonstrates the potential of LUBAC as a therapeutic target and of the use of stapled peptides as inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Francisco Aguilar-Alonso
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Amanda L Whiting
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Ye Joon Kim
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Federico Bernal
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| |
Collapse
|
22
|
Transcriptional downregulation of microRNA-19a by ROS production and NF-κB deactivation governs resistance to oxidative stress-initiated apoptosis. Oncotarget 2017; 8:70967-70981. [PMID: 29050336 PMCID: PMC5642611 DOI: 10.18632/oncotarget.20235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
Cell apoptosis is one of the main pathological alterations during oxidative stress (OS) injury. Previously, we corroborated that nuclear factor-κB (NF-κB) transactivation confers apoptosis resistance against OS in mammalian cells, yet the underlying mechanisms remain enigmatic. Here we report that microRNA-19a (miR-19a) transcriptionally regulated by reactive oxygen species (ROS) production and NF-κB deactivation prevents OS-initiated cell apoptosis through cylindromatosis (CYLD) repression. CYLD contributes to OS-initiated cell apoptosis, for which NF-κB deactivation is essential. MiR-19a directly represses CYLD via targeting 3′ UTR of CYLD, thereby antagonizing OS-initiated apoptosis. CYLD repression by miR-19a restores the IKKβ phosphorylation, RelA disassociation from IκBα, IκBα polyubiquitination and degradation, RelA recruitment at VEGF gene promoter as well as VEGF secretion in the context of OS. Either pharmacological deactivation of NF-κB or genetic upregulation of CYLD compromises the apoptosis-resistant phenotypes of miR-19a. Furthermore, miR-19a is transcriptionally downregulated upon OS in two distinct processes that require ROS production and NF-κB deactivation. VEGF potentiates the ability of miR-19a to activate NF-κB and render apoptosis resistance. Our findings underscore a putative mechanism whereby CYLD repression-mediated and NF-κB transactivation-dependent miR-19a regulatory feedback loop prevents cell apoptosis in response to OS microenvironment.
Collapse
|
23
|
Xu L, Jia Y, Yang XH, Han F, Zheng Y, Ni Y, Chen X, Hong J, Liu JQ, Li Q, Sun RH, Mo SJ. MicroRNA-130b transcriptionally regulated by histone H3 deacetylation renders Akt ubiquitination and apoptosis resistance to 6-OHDA. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1678-1689. [PMID: 28412322 DOI: 10.1016/j.bbadis.2017.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Apoptosis of DA neurons is a contributing cause of disability and death for Parkinson's disease (PD). Akt may become a potential therapeutic target for PD since Akt has been deactivated during DA neuron apoptosis. We previously demonstrated that Akt confers apoptosis resistance against 6-OHDA in DA neuron-like PC12 cells, yet the underlying mechanisms accounted for this are not fully understood. Here we report that microRNA-130b (miR-130b)-dependent and cylindromatosis (CYLD) repression-mediated Akt ubiquitination renders apoptosis resistance of PC12 cells to 6-OHDA, which elicits histone H3 deacetylation-induced transcriptional downregulation of miR-130b vice versa. CYLD deficiency ubiquitinates Akt at Lys63, thereby phosphorylating Akt and antagonizing 6-OHDA-initiated apoptosis. MiR-130b targetedly represses CYLD and increases apoptosis resistance to 6-OHDA. CYLD repression by miR-130b restores Akt ubiquitination and activation, GSK3β and FoxO3a phosphorylation, FoxO3a removal from Bim promoter as well as Bim downregulation during 6-OHDA administration. CYLD deficiency-mediated Akt activation is instrumental for the apoptosis-resistant phenotypes of miR-130b. In addition, 6-OHDA transcriptionally downregulates miR-130b through recruitment of HDAC3 at the promoter. Furthermore, EPO potentiates the ability of miR-130b to activate Akt and augment apoptosis resistance. Our findings identify the apoptosis-resistant function of miR-130b and suggest that histone H3 deacetylation plays a pivotal role in regulating miR-130b transcription in response to 6-OHDA.
Collapse
Affiliation(s)
- Liang Xu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Yu Jia
- Department of Nephrology, Tongji Hospital, Tongji Medical College of Huanzhong University of Science & Technology, Wuhan 430030, Hubei, China
| | - Xiang-Hong Yang
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Yang Zheng
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Yin Ni
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Xu Chen
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Jun Hong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Jing-Quan Liu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Ren-Hua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China.
| | - Shi-Jing Mo
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|