2
|
Stefanski CD, Prosperi JR. Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response. Int J Mol Sci 2020; 21:E7844. [PMID: 33105836 PMCID: PMC7660076 DOI: 10.3390/ijms21217844] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC's interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms.
Collapse
Affiliation(s)
- Casey D. Stefanski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA;
- Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Jenifer R. Prosperi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA;
- Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| |
Collapse
|
3
|
EL-Ghlban S, AbouElnour ES, EL- Torgoman AEMAEK, Abu Elabas SMS. Gene expression of Epithelial Membrane Protein 2 gene and β1-Integrin gene in patients with breast cancer. Biochem Biophys Rep 2020; 22:100708. [PMID: 32490210 PMCID: PMC7261703 DOI: 10.1016/j.bbrep.2019.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background Breast cancer is the most common invasive cancer and the leading cause of cancer death in women. The function of over a thousand genes is reported as affected by genetic modifications in breast cancer. Objectives To study the gene expression of Epithelial Membrane 2 (EMP2) and β1-Integrin genes in patients with breast cancer. Subjects and methods This study was carried out by cooperation between the Biochemistry Division Department of Chemistry, Faculty of Science and Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University. This study included 120 subjects divided into 2 groups Group I: Included 60 women with breast cancer undergoing modified radical mastectomy. Tissue specimens were taken from the cancerous breast tissue and from the marginal healthy breast tissues. Group II: Included 60 age and sex-matched apparently healthy women served as a control group. All patients participants were subjected to full history taking, general clinical examination, abdominal ultrasound, CT-scan for abdomen, mammography, fine needle biopsy, histopathological examination, immunostaining of tissues, metastatic work up (chest x-ray and bone scan) and laboratory investigations including: Complete blood count (patients and controls), serum carbohydrate antigen 15–3 (patients and controls), detection of EMP2 and β1-Integrin genes expression in the tissue samples by formation of cDNA by reverse transcription PCR after RNA extraction and real-time PCR using SYBR Green technique. Results Compared to healthy tissues, the breast cancer tissues had significant higher EMP2 and β1-Integringene expression levels. Also, there was a significant increase in CA15-3 in patients group as compared with the control group. It was found that EMP2 and β1-Integrin expression in malignant tissue samples correlates with advanced and metastatic disease. Conclusion The gene expression of EMP2 and β1-Integrin are important markers for the severity of breast cancer and they are good indicators of its prognosis.
Collapse
|
4
|
Chung LK, Bhatt NS, Lagman C, Pelargos PE, Qin Y, Gordon LK, Wadehra M, Yang I. Epithelial membrane protein 2: Molecular interactions and clinical implications. J Clin Neurosci 2017; 44:84-88. [PMID: 28720310 DOI: 10.1016/j.jocn.2017.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
Abstract
Epithelial membrane protein 2 (EMP2) is a cell surface protein that has recently emerged as an object of neuro-oncological interest due to its potential to be utilized as a biomarker and target for antibody therapies. Preclinical studies have demonstrated that EMP2 is associated with disease prognosis in a number of human cancers, including glioblastoma. The four large extracellular domains of EMP2 and its association with the extracellular matrix makes it an attractive target for future cancer therapies. Translational research suggests that EMP2 may be targeted with antibodies to improve tumor control and survival in a variety of murine models and cancer types. However, in order to translate these preclinical findings into the clinic, future research will need to focus on elucidating the role EMP2 in the normal human body by better understanding its molecular and chemical interactions. The focus of this review is to provide a comprehensive insight into current research endeavors, discuss the potential for clinically translatable applications, and predict the future directions of such research.
Collapse
Affiliation(s)
- Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Nikhilesh S Bhatt
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Panayiotis E Pelargos
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA
| | - Yu Qin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA 90095, USA
| | - Lynn K Gordon
- Department of Ophthalmology, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 924 Westwood Blvd, Seventh Floor, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite B265, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, 300 Stein Plaza, Suite 420, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite B265, Los Angeles, CA 90095, USA; Department of Radiation Oncology, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite B265, Los Angeles, CA 90095, USA; Department of Head and Neck Surgery, University of California, Los Angeles, 200 UCLA Medical Plaza, Suite 550, Los Angeles, CA 90095, USA.
| |
Collapse
|