1
|
Kyurkchiyan SG, Stancheva G, Petkova V, Hadzhiev Y, Dobriyanova V, Popova D, Kaneva R, Popov TM. Exploration of the association between HIF3α mRNA and lncRNA MALAT1 in laryngeal squamous cell carcinoma by correlation analysis. Oncol Lett 2024; 28:292. [PMID: 38737978 PMCID: PMC11082855 DOI: 10.3892/ol.2024.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/28/2024] [Indexed: 05/14/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a significant global health burden, for which there has been limited evidence of improved survival rates. Although the roles of hypoxia-inducible factor (HIF)1α and HIF2α have been well documented in hypoxia, the involvement of HIF3α, particularly in LSCC, has been inadequately explored. The present study aimed to investigate the correlation between HIFα subunits and the hypoxia-related long noncoding RNAs (lncRNAs) MALAT1 and HOTAIR in 63 patients diagnosed with LSCC. Total RNA was extracted from fresh-frozen laryngeal tumor and adjacent normal tissues, and was subjected to reverse transcription-quantitative PCR for target detection. Statistical analyses were conducted using SPSS software, with significance set at P<0.05. The present study is the first, to the best of our knowledge, to report a positive moderate monotonic correlation (rs=0.347) and moderately strong positive linear correlation (r=0.630) between HIF3α mRNA and lncRNA MALAT1 in LSCC. Regression analysis revealed a direct association between 39.6% of both variables. Additionally, a positive correlation was observed between lncRNAs MALAT1 and HOTAIR (rs=0.353); HIF2α mRNA and lncRNA MALAT1 (rs=0.431); HIF3α mRNA and lncRNA HOTAIR (rs=0.279); and HIF3α mRNA and HIF2α mRNA (rs=0.285). Notably, a significant negative correlation (rs=-0.341) was detected between HIF3α mRNA and HIF1α mRNA, potentially indicative of the HIF switch or negative regulation. In addition, the present study investigated the association between HIFα subunits and the clinicopathological characteristics of patients. The results revealed a notable association between HIF1α transcript levels and the location of LSCC; specifically, subglottic tumors exhibited elevated HIF1α levels compared with glottic and supraglottic LSCC. Furthermore, a significant association was identified between HIF3α transcript levels and patient age (P=0.032) and positive family history (P=0.047). In conclusion, the present findings suggested a pivotal role for HIF3α in LSCC development, potentially involving direct regulation of lncRNA MALAT1. However, further research is warranted to elucidate its precise mechanisms.
Collapse
Affiliation(s)
- Silva Garo Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Yuliyan Hadzhiev
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| | - Venera Dobriyanova
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| | - Diana Popova
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Todor Miroslavov Popov
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| |
Collapse
|
2
|
Luo K, Qian Z, Jiang Y, Lv D, Zhu K, Shao J, Hu Y, Lv C, Huang Q, Gao Y, Jin S, Shang D. Characterization of the metabolic alteration-modulated tumor microenvironment mediated by TP53 mutation and hypoxia. Comput Biol Med 2023; 163:107078. [PMID: 37356294 DOI: 10.1016/j.compbiomed.2023.107078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND TP53 mutation and hypoxia play an essential role in cancer progression. However, the metabolic reprogramming and tumor microenvironment (TME) heterogeneity mediated by them are still not fully understood. METHODS The multi-omics data of 32 cancer types and immunotherapy cohorts were acquired to comprehensively characterize the metabolic reprogramming pattern and the TME across cancer types and explore immunotherapy candidates. An assessment model for metabolic reprogramming was established by integration of multiple machine learning methods, including lasso regression, neural network, elastic network, and survival support vector machine (SVM). Pharmacogenomics analysis and in vitro assay were conducted to identify potential therapeutic drugs. RESULTS First, we identified metabolic subtype A (hypoxia-TP53 mutation subtype) and metabolic subtype B (non-hypoxia-TP53 wildtype subtype) in hepatocellular carcinoma (HCC) and showed that metabolic subtype A had an "immune inflamed" microenvironment. Next, we established an assessment model for metabolic reprogramming, which was more effective compared to the traditional prognostic indicators. Then, we identified a potential targeting drug, teniposide. Finally, we performed the pan-cancer analysis to illustrate the role of metabolic reprogramming in cancer and found that the metabolic alteration (MA) score was positively correlated with tumor mutational burden (TMB), neoantigen load, and homologous recombination deficiency (HRD) across cancer types. Meanwhile, we demonstrated that metabolic reprogramming mediated a potential immunotherapy-sensitive microenvironment in bladder cancer and validated it in an immunotherapy cohort. CONCLUSION Metabolic alteration mediated by hypoxia and TP53 mutation is associated with TME modulation and tumor progression across cancer types. In this study, we analyzed the role of metabolic alteration in cancer and propose a predictive model for cancer prognosis and immunotherapy responsiveness. We also explored a potential therapeutic drug, teniposide.
Collapse
Affiliation(s)
- Kunpeng Luo
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and lmaging Artificial Intelligence, Hengyang Medical School, University of South China Hengyang, Hunan, 421001, China; School of Computer, University of South China, Hengyang, Hunan, 421001, China; Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Zhipeng Qian
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and lmaging Artificial Intelligence, Hengyang Medical School, University of South China Hengyang, Hunan, 421001, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, 150081, China
| | - Dongxu Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kaibin Zhu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Harbin, Heilongjiang, 150081, China
| | - Jing Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Ying Hu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chengqian Lv
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qianqian Huang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yang Gao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Desi Shang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and lmaging Artificial Intelligence, Hengyang Medical School, University of South China Hengyang, Hunan, 421001, China; School of Computer, University of South China, Hengyang, Hunan, 421001, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
3
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
4
|
Single Nucleotide Polymorphisms of the HIF1A Gene are Associated With Sensitivity of Glucocorticoid Treatment in Pediatric ITP Patients. J Pediatr Hematol Oncol 2022; 45:195-199. [PMID: 35537010 DOI: 10.1097/mph.0000000000002483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in both innate and adaptive immunity. Emerging evidence indicates that HIF-1α is associated with the inflammation and pathologic activities of autoimmune diseases, suggesting that HIF1α may be involved in immune dysregulation in patients with immune thrombocytopenia (ITP). The purpose of this study was to evaluate whether single nucleotide polymorphisms (SNPs) of the HIF1A gene are associated with susceptibility to ITP and its clinical prognosis including incidence of chronic ITP and glucocorticoid sensitivity. MATERIALS AND METHODS This study involved 197 Chinese ITP pediatric patients (discovery cohort) and 220 healthy controls. The Sequenom MassArray system (Sequenom, San Diego, CA) was used to detect 3 SNPs genotypes in the HIF1A gene: rs11549465, rs1957757, and rs2057482. We also used another ITP cohort (N=127) to validate the significant results of SNPs found in the discovery cohort. RESULTS The frequencies of the three SNPs did not show any significant differences between the ITP and healthy control groups. The CT genotype at rs11549465 was significantly higher in ITP patients sensitive to glucocorticoid treatment than in those insensitive to glucocorticoid treatment (P=0.025). These results were validated using another ITP cohort (N=127, P=0.033). Moreover, the CC genotype was a risk factor for insensitive to GT the odds ratio (95% confidence interval) was 5.96 (5.23-6.69) in standard prednisone (P=0.0069) and 6.35 (5.33-7.37) in high-dose dexamethasone (P=0.04). CONCLUSIONS Although HIF1A gene polymorphisms were not associated with susceptibility to ITP, the CT genotype at rs11549465 was associated with the sensitivity to glucocorticoid treatment of ITP patients, suggesting that the rs11549465 SNP may contribute to the sensitivity of glucocorticoid treatment in pediatric ITP patients.
Collapse
|
5
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
6
|
Song Y, Zhang M, Lu MM, Qu LY, Xu SG, Li YZ, Wang MY, Zhu HF, Zhang ZY, He GY, Yuan ZQ, Li N. EPAS1 targeting by miR-152-3p in Paclitaxel-resistant Breast Cancer. J Cancer 2020; 11:5822-5830. [PMID: 32913475 PMCID: PMC7477434 DOI: 10.7150/jca.46898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Paclitaxel plays a pivotal role in the chemotherapy of breast cancer, but resistance to this drug is an important obstacle in the treatment. It is reported that microRNA-152-3p (miR-152-3p) is involved in tamoxifen resistance in breast cancer, but whether it is involved in paclitaxel resistance in breast cancer remains unknown. Materials and methods: We examined the expression of miR-152-3p in breast cancer tissues and cells by qRT-PCR. After transfecting paclitaxel-resistant MCF-7/TAX cells with miR-152-3p mimics, we analyzed the function of miR-152-3p in these cells by MTT assay and flow cytometry. We screened the target gene, endothelial PAS domain-containing protein 1 (EPAS1), using bioinformatics analysis and verified it with the dual luciferase reporter gene experiment. The relationship between EPAS1 and miR-152-3p and their roles in paclitaxel resistance of breast cancer were further investigated using RNA interference and transfection techniques. Results: The expression of miR-152-3p in normal breast tissues and cells was markedly higher than that in breast cancer. Overexpression of miR-152-3p decreased the survival rate and increased the apoptosis rate and sensitivity of MCF-7/TAX cells to paclitaxel. We confirmed that EPAS1 is the target of miR-152-3p and is negatively regulated by this miRNA. Moreover, transfection with EPAS1 siRNA enhanced the susceptibility and apoptosis rate of MCF-7/TAX cells to paclitaxel. Co-transfection of miR-152-3p mimics and EPAS1 increased paclitaxel sensitivity and apoptosis induced by the drug. Conclusion: miR-152-3p inhibits the survival of MCF-7/TAX cells and promotes their apoptosis by targeting the expression of EPAS1, thereby, enhancing the sensitivity of these breast cancer cells to paclitaxel.
Collapse
Affiliation(s)
- Ying Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mo Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Man Man Lu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Li Yuan Qu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Si Guang Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yong Zhen Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ming Yong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, Henan 453003, P.R. China
| | - Hui Fang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhe Ying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guo Yang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhi Qing Yuan
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
7
|
Takagi K, Kawamoto M, Higuchi T, Tochimoto A, Harigai M, Kawaguchi Y. Single nucleotide polymorphisms of the
HIF1A
gene are associated with susceptibility to pulmonary arterial hypertension in systemic sclerosis and contribute to SSc‐PAH disease severity. Int J Rheum Dis 2020; 23:674-680. [DOI: 10.1111/1756-185x.13822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Kae Takagi
- Department of Medicine Tokyo Women's Medical University Medical Center East Tokyo Japan
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Manabu Kawamoto
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Tomoaki Higuchi
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Akiko Tochimoto
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Masayoshi Harigai
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | - Yasushi Kawaguchi
- Department of Rheumatology Tokyo Women's Medical University School of Medicine Tokyo Japan
| |
Collapse
|
8
|
Singh L, Aldosary S, Saeedan AS, Ansari MN, Kaithwas G. Prolyl hydroxylase 2: a promising target to inhibit hypoxia-induced cellular metabolism in cancer cells. Drug Discov Today 2018; 23:1873-1882. [DOI: 10.1016/j.drudis.2018.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
|
9
|
NRF2 facilitates breast cancer cell growth via HIF1ɑ-mediated metabolic reprogramming. Int J Biochem Cell Biol 2017; 95:85-92. [PMID: 29275212 DOI: 10.1016/j.biocel.2017.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/25/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023]
Abstract
High aerobic glycolysis not only provides energy to breast cancer cells, but also supports their anabolic growth. The redox sensitive transcription factor NRF2 is over-expressed in multiple cancers, including breast cancer. It is unclear whether NRF2 could promote breast cancer cell growth through enhancing glycolysis. In this study, we found that NRF2 and HIF1α mRNA and protein levels were significantly increased in MCF-7 and MDA-MB-231 breast cancer cells as compared to MCF-10A benign breast epithelial cells. Down-regulation of NRF2 decreased MCF7 and MBA-DA-231 breast cell proliferation, while it reversed by hypoxia inducible factor 1α (HIF1α). Knockdown of NRF2 inhibited glycolysis by decreasing the expression of genes participated in glucose metabolism, including HK2, PFKFB3, PKM2 and LDHA. Our results further indicated that the AKT activation and AMPK inhibition were required for NRF2-mediated up-regulation of glycolytic enzymes. Consistent with these results, a positive correlation existed between NRF2 or HIF1α and several key glycolytic genes in human breast cancer cell samples and breast cancer patients with high NRF2 or HIF1α expression had poorer overall survival. In conclusion, our study demonstrates that NRF2 promotes breast cancer progression by enhancing glycolysis through coactivation of HIF1α, implicating that NRF2 is a potential molecular target for breast cancer treatment.
Collapse
|