1
|
Biyik-Sit R, Waigel S, Andreeva K, Rouchka E, Clem BF. Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncol Lett 2025; 29:9. [PMID: 39512505 PMCID: PMC11542166 DOI: 10.3892/ol.2024.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
The majority of malignant tumors exhibit an altered metabolic phenotype that ultimately provides the required energy and molecular precursors necessary for unregulated cell division. Within this, phosphoserine aminotransferase 1 (PSAT1) is involved in de novo serine biosynthesis and its activity promotes various biochemical processes, including one-carbon metabolism. It also directly generates α-ketoglutarate (α-KG), a Kreb cycle intermediate and epigenetic-regulating metabolite. Prior studies examining PSAT1 depletion have identified individual affected downstream pathways, such as GSK3β and E2F, in several cancer types, including non-small-cell lung cancer (NSCLC). However, global gene expression examination in response to PSAT1 loss, particularly in EGFR mutant NSCLC, has not been unexplored. Transcriptional profiling of EGFR mutant NSCLC cells with or without stable knock-down of PSAT1 identified differentially expressed genes (DEGs) enriched in several metabolic pathways required for cell division, including amino acid and nucleotide biosynthesis. Supplementation studies involving non-essential amino acids, nucleosides and α-KG partially restored defects in anchorage-independent growth due to the knockdown of PSAT1. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis identified potential impacts on actin cytoskeleton arrangement and β-catenin activity, which were rescued by PSAT1 re-expression. Finally, a comparative analysis of PSAT1 DEGs against transcripts enriched in patient EGFR mutant lung tumors identified a gene signature that is associated with overall and relapse-free survival (RFS) and was able to distinguish low or high-risk populations for RFS in early-stage EGFR mutant NSCLC. Overall, investigating genes altered by PSAT1 loss confirmed known PSAT1-regulated cellular pathways, identified a previously unknown role in the mediation of cytoskeleton arrangement in EGFR mutant NSCLC cells and allowed for the characterization of a gene signature with putative predictive potential for RFS in early-stage disease.
Collapse
Affiliation(s)
- Rumeysa Biyik-Sit
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Brown Cancer Center, Louisville, KY 40202, USA
| | - Sabine Waigel
- Brown Cancer Center, Louisville, KY 40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Kalina Andreeva
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40202, USA
| | - Eric Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- Brown Cancer Center, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Deng Q, Wu M, Deng J. USP36 promotes tumor growth of non-small cell lung cancer via increasing KHK-A expression by regulating c-MYC-hnRNPH1/H2 axis. Hum Cell 2022; 35:694-704. [PMID: 35133629 DOI: 10.1007/s13577-022-00677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with poor prognosis. This study designated to figure out the effects of Ubiquitin Specific Peptidase 36 (USP36) on NSCLC. Data of this study demonstrated that upregulation of USP36 was observed in NSCLC tissues and cell lines. Overexpression of USP36 promoted NSCLC cell proliferation and inhibited NSCLC cell apoptosis. Knockdown of USP36 decreased Ketohexokinase A (KHK-A) and increased KHK-C expression at both RNA and protein levels. Expression of c-MYC and hnRNPH1/H2 was positively correlated with the expression of USP36. Upregulation of c-MYC reversed the downregulation of hnRNPH1/H2 induced inhibition of USP36. Overexpression of hnRNPH1/H2 reversed the downregulation of KHK-A induced inhibition of USP36. Results of in vivo xenograft model were consistent with the findings of in vitro experiments. In summary, overexpression of USP36 in NSCLC accelerated tumor growth through upregulation of KHK-A, which was medicated by stabilizing c-MYC to increase hnRNPH1/H2 expression.
Collapse
Affiliation(s)
- Qian Deng
- Department of Palliative Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Maolin Wu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan Province, China.
| | - Jing Deng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
3
|
Zandsalimi F, Talaei S, Noormohammad Ahari M, Aghamiri S, Raee P, Roshanzamiri S, Yarian F, Bandehpour M, Zohrab Zadeh Z. Antimicrobial peptides: a promising strategy for lung cancer drug discovery? Expert Opin Drug Discov 2020; 15:1343-1354. [PMID: 32749935 DOI: 10.1080/17460441.2020.1791080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs), also called host defense peptides (HDPs), are identified in almost any form of life, which play an important role in innate immune systems. They have a broad spectrum of antifungal, antiviral, antibacterial, and anticancer activities. Lung cancer remains the leading cause of global cancer-related death. Unfortunately, lung cancer chemotherapy is accompanied by serious side effects, nonspecific toxicity, and multidrug resistance. Hence, to overcome these drawbacks, anticancer peptides (ACPs) derived from AMPs may represent a potential promising synergistic treatment strategy for lung cancer. AREAS COVERED In this review, the authors provide the recent advancements in the use of AMPs for the treatment of lung cancer. Furthermore, the anti-lung cancer modes of action of these peptides have been fully reviewed. Importantly, various strategies for increasing the efficiency and safety of AMPs have been discussed. EXPERT OPINION The combination of AMPs and other cancer treatment approaches such as chemotherapy, nanoparticle-based delivery systems, and photodynamic therapy can be used as a promising revolutionary strategy for the treatment of lung cancer. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mehdi Noormohammad Ahari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Zeinab Zohrab Zadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
4
|
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently expressed at elevated levels in different forms of cancer and expression often correlates positively with cancer progression and poor prognosis. Different mutant forms of this protein also contribute to cancer heterogeneity. A constitutively active form of EGFR, EGFRvIII is one of the most important variants. EGFR is responsible for the maintenance and functions of cancer stem cells (CSCs), including stemness, metabolism, immunomodulatory-activity, dormancy and therapy-resistance. EGFR regulates these pathways through several signaling cascades, and often cooperates with other RTKs to exert further control. Inhibitors of EGFR have been extensively studied and display some anticancer efficacy. However, CSCs can also acquire resistance to EGFR inhibitors making effective therapy even more difficult. To ameliorate this limitation of EGFR inhibitors when used as single agents, it may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitors with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair. These combinatorial approaches require further experimental confirmation, but if successful would expand and improve therapeutic outcomes employing EGFR inhibitors as one arm of the therapy.
Collapse
|
5
|
A novel reporter construct for screening small molecule inhibitors that specifically target self-renewing cancer cells. Exp Cell Res 2019; 383:111551. [PMID: 31401066 DOI: 10.1016/j.yexcr.2019.111551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells, which possess self-renewal ability, and lead to tumor progression, metastasis, and resistance to therapy. Live detection and isolation of CSCs are important to understand the biology of CSCs as well as to screen drugs that target them. Even though CSCs are detected using surface markers, there is a lot of inconsistencies for that in a given cancer type. At the same time, self-renewal markers like ALDH1A1, OCT4A and SOX2, which are intracellular molecules, are reliable markers for CSCs in different cancers. In the present study, we generated a reporter construct for self-renewing CSCs, based on ALDH1A1 expression. Oral cancer cells harboring ALDH1A1-DsRed2 were used to screen inhibitors that target CSCs. Our results showed that Comb1, a cocktail of inhibitors for EGF and TGF-β pathways and their intermediates, effectively reduced the DsRed2 population to 34%. Our immunohistochemical analysis on primary oral cancer corroborated the importance of EGF and TGF-β pathways in sustaining CSCs. Since these two pathways are also critical for the self-renewal and differentiation of normal stem cells, Comb1 might abolish them as well. On analysis of the effect of Comb1 on normal murine bone marrow cells, there was no significant change in the stem cell self-renewal and differentiation potential in the treated group compared to untreated cells. To conclude, we claim that ALDH1A1-DsRed2 is a useful tool to detect CSCs, and Comb1 is effective in targeting CSCs without affecting normal stem cells.
Collapse
|