1
|
Schulz K, Hazelton-Cavill P, Alornyo KK, Edenhofer I, Lindenmeyer M, Lohr C, Huber TB, Denholm B, Koehler S. Piezo activity levels need to be tightly regulated to maintain normal morphology and function in pericardial nephrocytes. Sci Rep 2024; 14:28254. [PMID: 39548228 PMCID: PMC11568303 DOI: 10.1038/s41598-024-79352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Due to their position on glomerular capillaries, podocytes are continuously counteracting biomechanical filtration forces. Most therapeutic interventions known to generally slow or prevent the progression of chronic kidney disease appear to lower these biomechanical forces on podocytes, highlighting the critical need to better understand podocyte mechano-signalling pathways. Here we investigated whether the mechanotransducer Piezo is involved in a mechanosensation pathway in Drosophila nephrocytes, the podocyte homologue in the fly. Loss of function analysis in Piezo depleted nephrocytes reveal a severe morphological and functional phenotype. Further, pharmacological activation of endogenous Piezo with Yoda1 causes a significant increase of intracellular Ca++ upon exposure to a mechanical stimulus in nephrocytes, as well as filtration disturbances. Elevated Piezo expression levels also result in a severe nephrocyte phenotype. Interestingly, expression of Piezo which lacks mechanosensitive channel activity, does not result in a severe nephrocyte phenotype, suggesting the observed changes in Piezo wildtype overexpressing cells are caused by the mechanosensitive channel activity. Moreover, blocking Piezo activity using the tarantula toxin GsMTx4 reverses the phenotypes observed in nephrocytes overexpressing Piezo. Taken together, here we provide evidence that Piezo activity levels need to be tightly regulated to maintain normal pericardial nephrocyte morphology and function.
Collapse
Affiliation(s)
- Kristina Schulz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paris Hazelton-Cavill
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl K Alornyo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Campus Forschung II N25, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
2
|
Delaney M, Zhao Y, van de Leemput J, Lee H, Han Z. Actin Cytoskeleton and Integrin Components Are Interdependent for Slit Diaphragm Maintenance in Drosophila Nephrocytes. Cells 2024; 13:1350. [PMID: 39195240 DOI: 10.3390/cells13161350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. Here, we used the well-established Drosophila pericardial nephrocyte-the equivalent of podocytes in flies-knockdown models (RNAi) to study the interplay of the actin cytoskeleton (Act5C, Act57B, Act42A, and Act87E), alpha- and beta-integrin (basement membrane), and the slit diaphragm (Sns and Pyd). Knockdown of an actin gene led to variations of formation of actin stress fibers, the internalization of Sns, and a disrupted slit diaphragm cortical pattern. Notably, deficiency of Act5C, which resulted in complete absence of nephrocytes, could be partially mitigated by overexpressing Act42A or Act87E, suggesting at least partial functional redundancy. Integrin localized near the actin cytoskeleton as well as slit diaphragm components, but when the nephrocyte cytoskeleton or slit diaphragm was disrupted, this switched to colocalization, both at the surface and internalized in aggregates. Altogether, the data show that the interdependence of the slit diaphragm, actin cytoskeleton, and integrins is key to the structure and function of the Drosophila nephrocyte.
Collapse
Affiliation(s)
- Megan Delaney
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
4
|
Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatr Nephrol 2023; 38:3875-3887. [PMID: 37171583 PMCID: PMC10584755 DOI: 10.1007/s00467-023-05996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Biological and biomedical research using Drosophila melanogaster as a model organism has gained recognition through several Nobel prizes within the last 100 years. Drosophila exhibits several advantages when compared to other in vivo models such as mice and rats, as its life cycle is very short, animal maintenance is easy and inexpensive and a huge variety of transgenic strains and tools are publicly available. Moreover, more than 70% of human disease-causing genes are highly conserved in the fruit fly. Here, we explain the use of Drosophila in nephrology research and describe two kidney tissues, Malpighian tubules and the nephrocytes. The latter are the homologous cells to mammalian glomerular podocytes and helped to provide insights into a variety of signaling pathways due to the high morphological similarities and the conserved molecular make-up between nephrocytes and podocytes. In recent years, nephrocytes have also been used to study inter-organ communication as links between nephrocytes and the heart, the immune system and the muscles have been described. In addition, other tissues such as the eye and the reproductive system can be used to study the functional role of proteins being part of the kidney filtration barrier.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
PI(4,5)P2 controls slit diaphragm formation and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci 2022; 79:248. [PMID: 35437696 PMCID: PMC9016003 DOI: 10.1007/s00018-022-04273-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022]
Abstract
Drosophila nephrocytes are an emerging model system for mammalian podocytes and proximal tubules as well as for the investigation of kidney diseases. Like podocytes, nephrocytes exhibit characteristics of epithelial cells, but the role of phospholipids in polarization of these cells is yet unclear. In epithelia, phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) are asymmetrically distributed in the plasma membrane and determine apical–basal polarity. Here, we demonstrate that both phospholipids are present in the plasma membrane of nephrocytes, but only PI(4,5)P2 accumulates at slit diaphragms. Knockdown of Skittles, a phosphatidylinositol(4)phosphate 5-kinase, which produces PI(4,5)P2, abolished slit diaphragm formation and led to strongly reduced endocytosis. Notably, reduction in PI(3,4,5)P3 by overexpression of PTEN or expression of a dominant-negative phosphatidylinositol-3-kinase did not affect nephrocyte function, whereas enhanced formation of PI(3,4,5)P3 by constitutively active phosphatidylinositol-3-kinase resulted in strong slit diaphragm and endocytosis defects by ectopic activation of the Akt/mTOR pathway. Thus, PI(4,5)P2 but not PI(3,4,5)P3 is essential for slit diaphragm formation and nephrocyte function. However, PI(3,4,5)P3 has to be tightly controlled to ensure nephrocyte development.
Collapse
|
6
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
7
|
Martinez-Arroyo O, Selma-Soriano E, Ortega A, Cortes R, Redon J. Small Rab GTPases in Intracellular Vesicle Trafficking: The Case of Rab3A/Raphillin-3A Complex in the Kidney. Int J Mol Sci 2021; 22:7679. [PMID: 34299299 PMCID: PMC8303874 DOI: 10.3390/ijms22147679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Small Rab GTPases, the largest group of small monomeric GTPases, regulate vesicle trafficking in cells, which are integral to many cellular processes. Their role in neurological diseases, such as cancer and inflammation have been extensively studied, but their implication in kidney disease has not been researched in depth. Rab3a and its effector Rabphillin-3A (Rph3A) expression have been demonstrated to be present in the podocytes of normal kidneys of mice rats and humans, around vesicles contained in the foot processes, and they are overexpressed in diseases with proteinuria. In addition, the Rab3A knockout mice model induced profound cytoskeletal changes in podocytes of high glucose fed animals. Likewise, RphA interference in the Drosophila model produced structural and functional damage in nephrocytes with reduction in filtration capacities and nephrocyte number. Changes in the structure of cardiac fiber in the same RphA-interference model, open the question if Rab3A dysfunction would produce simultaneous damage in the heart and kidney cells, an attractive field that will require attention in the future.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Estela Selma-Soriano
- Physiopathology of Cellular and Organic Oxidative Stress Group, University of Valencia, 46100 Valencia, Spain;
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
- CIBERObn, Carlos III Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Selma-Soriano E, Llamusi B, Fernández-Costa JM, Ozimski LL, Artero R, Redón J. Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes. Dis Model Mech 2020; 13:dmm041509. [PMID: 32680845 PMCID: PMC7522021 DOI: 10.1242/dmm.041509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/07/2020] [Indexed: 02/04/2023] Open
Abstract
Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the endocytic pathway in pericardial Drosophila nephrocytes. Knockdown of Rph reduced the expression of the cubilin and stick and stones genes, which encode proteins that are involved in protein uptake and filtration. We also found that reduced Rph expression resulted in a disappearance of the labyrinthine channel structure and a reduction in the number of endosomes, which ultimately leads to changes in the number and volume of nephrocytes. Finally, we demonstrated that the administration of retinoic acid to IR-Rph nephrocytes rescued some altered aspects, such as filtration and molecular uptake, as well as the maintenance of cell fate. According to our data, Rph is crucial for nephrocyte filtration and reabsorption, and it is required for the maintenance of the ultrastructure, integrity and differentiation of the nephrocyte.
Collapse
Affiliation(s)
- Estela Selma-Soriano
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Juan Manuel Fernández-Costa
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Lauren Louise Ozimski
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Josep Redón
- Hypertension Unit, Hospital Clínico Universitario, 46010 Valencia, Spain
| |
Collapse
|
9
|
Abstract
Podocytes, or glomerular epithelial cells, form the final layer in the glomerular capillary wall of the kidney. Along with the glomerular basement membrane and glomerular endothelial cells, they make up the glomerular filtration barrier which allows the passage of water and small molecules and, in healthy individuals, prevents the passage of albumin and other key proteins. The podocyte is a specialised and terminally differentiated cell with a specific cell morphology that is largely dependent on a highly dynamic underlying cytoskeletal network and that is essential for maintaining glomerular function and integrity in healthy kidneys. The RhoGTPases (RhoA, Rac1 and Cdc42), which act as molecular switches that regulate actin dynamics, are known to play a crucial role in maintaining the cytoskeletal and molecular integrity of the podocyte foot processes in a dynamic manner. Recently, novel protein interaction networks that regulate the RhoGTPases in the podocyte and that are altered by disease have been discovered. This review will discuss these networks and their potential as novel therapeutic targets in nephrotic syndrome. It will also discuss the evidence that they are direct targets for (a) steroids, the first-line agents for the treatment of nephrotic syndrome, and (b) certain kinase inhibitors used in cancer treatment, leading to nephrotoxicity.
Collapse
Affiliation(s)
- Moin A. Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Gavin I. Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| |
Collapse
|