1
|
Leclercq B, Mejlachowicz D, Zhu L, Jonet L, Mehanna C, Berdugo M, Irinopoulou T, Jaisser F, Zhao M, Behar-Cohen F. Differential Effect of Aldosterone or Mineralocorticoid Receptor Overexpression on Retinal Inflammation. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39453673 PMCID: PMC11512573 DOI: 10.1167/iovs.65.12.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Overactivation of the mineralocorticoid receptor (MR) pathway is proinflammatory and contributes to the pathogenesis of diabetic retinopathy and of age-related macular degeneration. Excess of aldosterone, the specific MR ligand, is known to stimulate the production of proinflammatory cytokines and chemokines in extrarenal tissues and cells. In the RPE/choroid complex, aldosterone upregulated genes encoding proteins of the inflammatory response and downregulated genes encoding proteins involved in synaptic activity and neurotransmitters. Yet, cortisol, which is the main MR ligand in the eye, is a potent anti-inflammatory endogenous glucocorticoid. The aim of the present work was to better understand the role of MR activation in retinal inflammation either by acute injection of aldosterone or overexpression of the receptor. Methods We first analyzed the retinal transcriptomic regulation induced by acute intraocular injection of aldosterone in the rat. Then, we used a transgenic rat overexpressing human MR (hMR) to also conduct retinal transcriptomic analysis as well as histological evaluation of the retina, retinal pigment epithelium and choroid. Results Our results show that acute intravitreal injection of aldosterone is highly proinflammatory, upregulating pathways related to microglial activation, oxidative stress, cell death, and downregulating pathways related to glial/neuronal cells activity and proper neurotransmission. On the other hand, hMR overexpression mediates a low-grade inflammation in the retina, associated with notable choroidal inflammation and choroidal neuropathy. Conclusions Consequences of hMR overexpression or aldosterone-injection on retinal transcriptome reveal very distinct pathological mechanisms, with only a few common genes regulated, most of them not being regulated in the same way. Although aldosterone is highly proinflammatory in the retina, MR overactivation in its physiologic milieu mediates a low-grade inflammation in the neural retina.
Collapse
Affiliation(s)
- Bastien Leclercq
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Dan Mejlachowicz
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Linxin Zhu
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Chadi Mehanna
- Hôpital Américain de Paris, Neuilly-sur-Seine, Paris, France
| | - Marianne Berdugo
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | | | - Fréderic Jaisser
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Inserm UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Ophthalmopole Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
2
|
Kim SY, Choi JA, Choi S, Kim KK, Song CH, Kim EM. Advances in an In Vitro Tuberculosis Infection Model Using Human Lung Organoids for Host-Directed Therapies. PLoS Pathog 2024; 20:e1012295. [PMID: 39052544 PMCID: PMC11271890 DOI: 10.1371/journal.ppat.1012295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis (M.tb) has led to the development of novel anti-tuberculosis (anti-TB) drugs. Common methods for testing the efficacy of new drugs, including two-dimensional cell culture models or animal models, have several limitations. Therefore, an appropriate model representative of the human organism is required. Here, we developed an M.tb infection model using human lung organoids (hLOs) and demonstrated that M.tb H37Rv can infect lung epithelial cells and human macrophages (hMφs) in hLOs. This novel M.tb infection model can be cultured long-term and split several times while maintaining a similar number of M.tb H37Rv inside the hLOs. Anti-TB drugs reduced the intracellular survival of M.tb in hLOs. Notably, M.tb growth in hLOs was effectively suppressed at each passage by rifampicin and bedaquiline. Furthermore, a reduction in inflammatory cytokine production and intracellular survival of M.tb were observed upon knockdown of MFN2 and HERPUD1 (host-directed therapeutic targets for TB) in our M.tb H37Rv-infected hLO model. Thus, the incorporation of hMφs and M.tb into hLOs provides a powerful strategy for generating an M.tb infection model. This model can effectively reflect host-pathogen interactions and be utilized to test the efficacy of anti-TB drugs and host-directed therapies.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University Daejeon, Republic of Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Seri Choi
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University Daejeon, Republic of Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women’s University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yang X, Liu Y, Zhong W, Li Y, Zhang W. Netrin-1 controls inflammation in response to ischemic stroke through altering microglia phenotype. Front Immunol 2023; 14:1178638. [PMID: 37388740 PMCID: PMC10304015 DOI: 10.3389/fimmu.2023.1178638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction The current approaches that are used to treat ischemic stroke suffer from poor targeting, lack of effectiveness, and potential off-target effects, necessitating the development of new therapeutic strategies to enhance neuronal cell survival and regeneration. This study aimed to investigate the role of microglial Netrin-1 in ischemic stroke, a topic that has not been fully understood. Methods Netrin-1 levels and its primary receptor expressions were investigated in cerebral microglia from acute ischemic stroke patients and age-matched control subjects. A public database (GEO148350), which supplied RNAseq results for rat cerebral microglia in a middle cerebral artery occlusion (MCAO) model, was analyzed to assess the expression of Netrin-1, its major receptors, and genes related to macrophage function. A microglia-specific gene targeting approach and a delivery system allowing for crossing the blood-brain barrier were applied in a mouse model for ischemic stroke to investigate the role of microglial Netrin-1. Netrin-1 receptor signaling in microglia was observed and the effects on microglial phenotype, apoptosis, and migration were analyzed. Results Across human patients, rat and mouse models, activation of Netrin-1 receptor signaling was mainly conducted via its receptor UNC5a in microglia, which resulted in a shift in microglial phenotype towards an anti-inflammatory or M2-like state, leading to a reduction in apoptosis and migration of microglia. Netrin-1-induced phenotypic change in microglia exerted protective effects on neuronal cells in vivo during ischemic stroke. Conclusion Our study highlights the potential of targeting Netrin-1 and its receptors as a promising therapeutic strategy for promoting post-ischemic survival and functional recovery.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weijie Zhong
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yi Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Jobava R, Mao Y, Guan BJ, Hu D, Krokowski D, Chen CW, Shu XE, Chukwurah E, Wu J, Gao Z, Zagore LL, Merrick WC, Trifunovic A, Hsieh AC, Valadkhan S, Zhang Y, Qi X, Jankowsky E, Topisirovic I, Licatalosi DD, Qian SB, Hatzoglou M. Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Mol Cell 2021; 81:4191-4208.e8. [PMID: 34686314 PMCID: PMC8559772 DOI: 10.1016/j.molcel.2021.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
Collapse
Affiliation(s)
- Raul Jobava
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA; Department of Molecular Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Evelyn Chukwurah
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | | | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, CWRU, Cleveland, OH 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, CWRU, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, Departments of Biochemistry and Experimental Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Donny D Licatalosi
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA.
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Jiang Y, Tao Z, Chen H, Xia S. Endoplasmic Reticulum Quality Control in Immune Cells. Front Cell Dev Biol 2021; 9:740653. [PMID: 34660599 PMCID: PMC8511527 DOI: 10.3389/fcell.2021.740653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum quality control (ERQC) system, including endoplasmic reticulum-associated degradation (ERAD), the unfolded protein response (UPR), and autophagy, presides over cellular protein secretion and maintains proteostasis in mammalian cells. As part of the immune system, a variety of proteins are synthesized and assembled correctly for the development, activation, and differentiation of immune cells, such as dendritic cells (DCs), macrophages, myeloid-derived-suppressor cells (MDSCs), B lymphocytes, T lymphocytes, and natural killer (NK) cells. In this review, we emphasize the role of the ERQC in these immune cells, and also discuss how the imbalance of ER homeostasis affects the immune response, thereby suggesting new therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hua Chen
- Department of Colorectal Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Li W, Wang Y, Zhu L, Du S, Mao J, Wang Y, Wang S, Bo Q, Tu Y, Yi Q. The P300/XBP1s/Herpud1 axis promotes macrophage M2 polarization and the development of choroidal neovascularization. J Cell Mol Med 2021; 25:6709-6720. [PMID: 34057287 PMCID: PMC8278076 DOI: 10.1111/jcmm.16673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Neovascular age‐related macular degeneration (AMD), which is characterized by choroidal neovascularization (CNV), leads to vision loss. M2 macrophages produce vascular endothelial growth factor (VEGF), which aggravates CNV formation. The histone acetyltransferase p300 enhances the stability of spliced X‐box binding protein 1 (XBP1s) and promotes the transcriptional activity of the XBP1s target gene homocysteine inducible endoplasmic reticulum protein with ubiquitin‐like domain 1 (Herpud1). Herpud1 promotes the M2 polarization of macrophages. This study aimed to explore the roles of the p300/XBP1s/Herpud1 axis in the polarization of macrophages and the pathogenesis of CNV. Hypoxia‐induced p300 interacted with XBP1s to acetylate XBP1s in RAW264.7 cells. Additionally, hypoxia‐induced p300 enhanced the XBP‐1s‐mediated unfolded protein response (UPR), alleviated the proteasome‐dependent degradation of XBP1s and enhanced the transcriptional activity of XBP1s for Herpud1. The hypoxia‐induced p300/XBP1s/Herpud1 axis facilitated RAW264.7 cell M2 polarization. Knockdown of the p300/XBP1s/Herpud1 axis in RAW264.7 cells inhibited the proliferation, migration and tube formation of mouse choroidal endothelial cells (MCECs). The p300/XBP1s/Herpud1 axis increased in infiltrating M2‐type macrophages in mouse laser‐induced CNV lesions. Blockade of the p300/XBP1s/Herpud1 axis inhibited macrophage M2 polarization and alleviated CNV lesions. Our study demonstrated that the p300/XBP1s/Herpud1 axis in infiltrating macrophages increased the M2 polarization of macrophages and the development of CNV.
Collapse
Affiliation(s)
- Wendie Li
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Jinghai Mao
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Yanyan Wang
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Sangsang Wang
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Qingyun Bo
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - QuanYong Yi
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| |
Collapse
|
7
|
Miao X, Jin C, Zhong Y, Feng J, Yan C, Xia X, Zhang Y, Peng X. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals the Protective Effect of Apigenin on Palmitate-Induced Lipotoxicity in Human Aortic Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8836-8846. [PMID: 32687348 DOI: 10.1021/acs.jafc.0c03260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ingestion of excessive free fatty acid could induce lipotoxicity in tissues and then lead to the initiation of many metabolism diseases. In this work, the protective effect of apigenin on palmitate-induced lipotoxicity in human aortic endothelial cells (HAEC) was investigated. Compared with 150 μM palmitate treatment alone, pretreatment with 10 μM apigenin for 6 h significantly increased the cell viability from 71.55 ± 3.62 to 91.06 ± 4.30% and improved mitochondrial membrane potential to the normal level (101.62 ± 11.72% of control). In addition, the production of nitric oxide was markedly elevated by apigenin cotreatment from 7.10 ± 3.95 to 94.20 ± 21.86%. The data-independent acquisition-based proteomic approach was used to study the protective mechanism, and the results revealed that 242 proteins were differently expressed in cells treated with palmitate and 93 proteins were reversed after apigenin supplementation. Apigenin realized its protective function mainly via regulating pathways such as IL-17, TNF, Fox O, cell adhesion, and endoplasmic reticulum protein processing. Collectively, these data demonstrated that apigenin supplement may serve as an alternative nutritional intervention to protect HAEC against lipotoxicity.
Collapse
Affiliation(s)
- Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayu Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaoli Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020; 181:1643-1660.e17. [PMID: 32470396 DOI: 10.1016/j.cell.2020.05.007] [Citation(s) in RCA: 548] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/01/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.
Collapse
|
10
|
High-Dose Dexamethasone Manipulates the Tumor Microenvironment and Internal Metabolic Pathways in Anti-Tumor Progression. Int J Mol Sci 2020; 21:ijms21051846. [PMID: 32156004 PMCID: PMC7084511 DOI: 10.3390/ijms21051846] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
High-dose dexamethasone (DEX) is used to treat chemotherapy-induced nausea and vomiting or to control immunotherapy-related autoimmune diseases in clinical practice. However, the underlying mechanisms of high-dose DEX in tumor progression remain unaddressed. Therefore, we explored the effects of high-dose DEX on tumor progression and the potential mechanisms of its anti-tumor function using immunohistochemistry, histological examination, real-time quantitative PCR (qPCR), and Western blotting. Tumor volume, blood vessel invasion, and levels of the cell proliferation markers Ki67 and c-Myc and the anti-apoptotic marker Bcl2 decreased in response to high-dose DEX. However, the cell apoptosis marker cleaved caspase 3 increased significantly in mice treated with 50 mg/kg DEX compared with controls. Some genes associated with immune responses were significantly downregulated following treatment with 50 mg/kg DEX e.g., Cxcl9, Cxcl10, Cd3e, Gzmb, Ifng, Foxp3, S100a9, Arg1, and Mrc1. In contrast, the M1-like tumor-associated macrophages (TAMs) activation marker Nos2 was shown to be increased. Moreover, the expression of peroxisome proliferator-activated receptors α and γ (Pparα and Pparg, respectively) was shown to be significantly upregulated in livers or tumors treated with DEX. However, high-dose DEX treatment decreased the expression of glucose and lipid metabolic pathway-related genes such as glycolysis-associated genes (Glut1, Hk2, Pgk1, Idh3a), triglyceride (TG) synthesis genes (Gpam, Agpat2, Dgat1), exogenous free fatty acid (FFA) uptake-related genes (Fabp1, Slc27a4, and CD36), and fatty acid oxidation (FAO) genes (Acadm, Acaa1, Cpt1a, Pnpla2). In addition, increased serum glucose and decreased serum TG and non-esterified fatty acid (NEFA) were observed in DEX treated-xenografted tumor mice. These findings indicate that high-dose DEX-inhibited tumor progression is a complicated process, not only activated by M1-like TAMs, but also decreased by the uptake and consumption of glucose and lipids that block the raw material and energy supply of cancer cells. Activated M1-like TAMs and inefficient glucose and lipid metabolism delayed tumor cell growth and promoted apoptosis. These findings have important implications for the application of DEX combined with drugs that target key metabolism pathways for tumor therapy in clinical practice.
Collapse
|
11
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|