1
|
Morais LV, dos Santos SN, Gomes TH, Malta Romano C, Colombo-Souza P, Amaral JB, Shio MT, Neves LM, Bachi ALL, França CN, Nali LHDS. Acute strength exercise training impacts differently the HERV-W expression and inflammatory biomarkers in resistance exercise training individuals. PLoS One 2024; 19:e0303798. [PMID: 38753716 PMCID: PMC11098355 DOI: 10.1371/journal.pone.0303798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Human Endogenous Retroviruses (HERVs) are fossil viruses that composes 8% of the human genome and plays several important roles in human physiology, including muscle repair/myogenesis. It is believed that inflammation may also regulate HERV expression, and therefore may contribute in the muscle repair, especially after training exercise. Hence, this study aimed to assess the level of HERVs expression and inflammation profile in practitioners' resistance exercises after an acute strength training session. METHODS Healthy volunteers were separated in regular practitioners of resistance exercise training group (REG, n = 27) and non-trained individuals (Control Group, n = 20). All individuals performed a strength exercise section. Blood samples were collected before the exercise (T0) and 45 minutes after the training session (T1). HERV-K (HML1-10) and W were relatively quantified, cytokine concentration and circulating microparticles were assessed. RESULTS REG presented higher level of HERV-W expression (~2.5 fold change) than CG at T1 (p<0.01). No difference was observed in the levels of HERV-K expression between the groups as well as the time points. Higher serum TNF-α and IL-10 levels were verified post-training session in REG and CG (p<0.01), and in REG was found a positive correlation between the levels of TNF-α at T1 and IL-10 at T0 (p = 0.01). Finally, a lower endothelial microparticle percentage was observed in REG at T1 than in T0 (p = 0.04). CONCLUSION REG individuals exhibited a significant upregulation of HERV-W and modulation of inflammatory markers when compared to CG. This combined effect could potentially support the process of skeletal muscle repair in the exercised individuals.
Collapse
Affiliation(s)
- Lucas Vinicius Morais
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | | | - Tabatah Hellen Gomes
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Camila Malta Romano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) LIM-52, São Paulo, Brazil
| | | | - Jonatas Bussador Amaral
- ENT Research Lab, Department of Otorhinolaryngology-Head and Neck Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Lucas Melo Neves
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | | |
Collapse
|
2
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
3
|
Zhang J, Qu C, Li T, Cui W, Wang X, Du J. Phagocytosis mediated by scavenger receptor class BI promotes macrophage transition during skeletal muscle regeneration. J Biol Chem 2019; 294:15672-15685. [PMID: 31462534 PMCID: PMC6816089 DOI: 10.1074/jbc.ra119.008795] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Macrophages play an essential role in skeletal muscle regeneration. The phagocytosis of muscle cell debris induces a switch of pro-inflammatory macrophages into an anti-inflammatory phenotype, but the cellular receptors mediating this phagocytosis are still unclear. In this paper, we report novel roles for SRB1 (scavenger receptor class BI) in regulating macrophage phagocytosis and macrophage phenotypic transitions for skeletal muscle regeneration. In a mouse model of cardiotoxin-induced muscle injury/regeneration, infiltrated macrophages expressed a high level of SRB1. Using SRB1 knockout mice, we observed the impairment of muscle regeneration along with decreased myogenin expression and increased matrix deposit. Bone marrow transplantation experiments indicated that SRB1 deficiency in bone marrow cells was responsible for impaired muscle regeneration. Compared with WT mice, SRB1 deficiency increased pro-inflammatory macrophage number and pro-inflammatory gene expression and decreased anti-inflammatory macrophage number and anti-inflammatory gene expression in injured muscle. In vitro, SRB1 deficiency led to a strong decrease in macrophage phagocytic activity on myoblast debris. SRB1-deficient macrophages easily acquired an M1 phenotype and failed to acquire an M2 phenotype in lipopolysaccharide/myoblast debris activation. Furthermore, SRB1 deficiency promoted activation of ERK1/2 MAPK signaling in macrophages stimulated with lipopolysaccharide/myoblast debris. Taken together, SRB1 in macrophages regulates phagocytosis and promotes M1 switch into M2 macrophages, contributing to muscle regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Chao Qu
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Taotao Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Wei Cui
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia 30322, To whom correspondence may be addressed. E-mail:
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
4
|
Zingler P, Särchen V, Glatter T, Caning L, Saggau C, Kathayat RS, Dickinson BC, Adam D, Schneider-Brachert W, Schütze S, Fritsch J. Palmitoylation is required for TNF-R1 signaling. Cell Commun Signal 2019; 17:90. [PMID: 31382980 PMCID: PMC6683503 DOI: 10.1186/s12964-019-0405-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.
Collapse
Affiliation(s)
- Philipp Zingler
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vinzenz Särchen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Timo Glatter
- Facility for Mass Spectrometry and Proteomics, MPI for Terrestrial Microbiology, Marburg, Germany
| | - Lotta Caning
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Infection Prevention and Infectious Diseases, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| |
Collapse
|