1
|
Morales-Rubio R, Bernal-Ramírez J, Rubio-Infante N, Luévano-Martínez LA, Ríos A, Escalante BA, García-Rivas G, Rodríguez González J. Cellular shortening and calcium dynamics are improved by noisy stimulus in a model of cardiomyopathy. Sci Rep 2023; 13:14898. [PMID: 37689752 PMCID: PMC10492796 DOI: 10.1038/s41598-023-41611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Noise is present in cell biology. The capability of cells to respond to noisy environment have become essential. This study aimed to investigate whether noise can enhance the contractile response and Ca2+ handling in cardiomyocytes from a cardiomyopathy model. Experiments were conducted in an experimental setup with Gaussian white noise, frequency, and amplitude control to stimulate myocytes. Cell shortening, maximal shortening velocity, time to peak shortening, and time to half relaxation variables were recorded to cell shortening. Ca2+ transient amplitude and raise rate variables were registered to measure Ca2+ transients. Our results for cell shortening, Ca2+ transient amplitude, and raise rate suggest that cell response improve when myocytes are noise stimulated. Also, cell shortening, maximal shortening velocity, Ca2+ transient amplitude, and raise improves in control cells. Altogether, these findings suggest novel characteristics in how cells improve their response in a noisy environment.
Collapse
Affiliation(s)
- Russell Morales-Rubio
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Nestor Rubio-Infante
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis A Luévano-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Amelia Ríos
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México
| | - Bruno A Escalante
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Jesús Rodríguez González
- Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Monterrey, Vía del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, México.
| |
Collapse
|
2
|
Volpe P, Bosutti A, Nori A, Filadi R, Gherardi G, Trautmann G, Furlan S, Massaria G, Sciancalepore M, Megighian A, Caccin P, Bernareggi A, Salanova M, Sacchetto R, Sandonà D, Pizzo P, Lorenzon P. Nerve-dependent distribution of subsynaptic type 1 inositol 1,4,5-trisphosphate receptor at the neuromuscular junction. J Gen Physiol 2022; 154:213498. [PMID: 36149386 PMCID: PMC9513380 DOI: 10.1085/jgp.202213128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are enriched at postsynaptic membrane compartments of the neuromuscular junction (NMJ), surrounding the subsynaptic nuclei and close to nicotinic acetylcholine receptors (nAChRs) of the motor endplate. At the endplate level, it has been proposed that nerve-dependent electrical activity might trigger IP3-associated, local Ca2+ signals not only involved in excitation-transcription (ET) coupling but also crucial to the development and stabilization of the NMJ itself. The present study was undertaken to examine whether denervation affects the subsynaptic IP3R distribution in skeletal muscles and which are the underlying mechanisms. Fluorescence microscopy, carried out on in vivo denervated muscles (following sciatectomy) and in vitro denervated skeletal muscle fibers from flexor digitorum brevis (FDB), indicates that denervation causes a reduction in the subsynaptic IP3R1-stained region, and such a decrease appears to be determined by the lack of muscle electrical activity, as judged by partial reversal upon field electrical stimulation of in vitro denervated skeletal muscle fibers.
Collapse
Affiliation(s)
- Pompeo Volpe
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- Correspondence to Pompeo Volpe:
| | | | - Alessandra Nori
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- National Research Council, Neuroscience Institute, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Gabor Trautmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Sandra Furlan
- National Research Council, Neuroscience Institute, Padova, Italy
| | | | | | - Aram Megighian
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | | | - Michele Salanova
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
- Neuromuscular Signaling, Center of Space Medicine Berlin, Berlin, Germany
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- National Research Council, Neuroscience Institute, Padova, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun 2022; 623:148-153. [DOI: 10.1016/j.bbrc.2022.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
|
4
|
Peng Y, Du J, Günther S, Guo X, Wang S, Schneider A, Zhu L, Braun T. Mechano-signaling via Piezo1 prevents activation and p53-mediated senescence of muscle stem cells. Redox Biol 2022; 52:102309. [PMID: 35395625 PMCID: PMC9005960 DOI: 10.1016/j.redox.2022.102309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle stem cells (MuSCs), also called satellite cells, are instrumental for postnatal muscle growth and skeletal muscle regeneration. Numerous signaling cascades regulate the fate of MuSCs during muscle regeneration but the molecular mechanism by which MuSCs sense mechanical stimuli remain unclear. Here, we describe that Piezo1, a mechanosensitive ion channel, keeps MuSCs in a quiescent state and prevents senescence. Absence of Piezo1 induces precocious activation of MuSCs, attenuates proliferation, and impairs differentiation, essentially abolishing efficient skeletal muscle regeneration and replenishment of the MuSC pool. Furthermore, we discovered that inactivation of Piezo1 results in compensatory up-regulation of T-type voltage-gated Ca2+ channels, leading to increased Ca2+ influx, which strongly induces NOX4 expression via cPKC. Elevated NOX4 expression in Piezo1-deficient MuSCs increases ROS levels and DNA damage, causing P53-dependent cellular senescence and cell death. The importance of the P53/P21-axis for mediating Piezo1-dependent cellular defects was confirmed by pharmacological inhibition of P53 in Piezo1-deficient mice, which abrogates increased senescence of muscle cells and normalizes muscle regeneration. Our findings uncover an essential role of Piezo1-mediated mechano-signaling in MuSCs for maintaining quiescence and preventing senescence. Reduced mechano-signaling due to decreased physical activity during aging may contribute to the increase of senescent cells and the decline of MuSC numbers in geriatric mice and humans. Piezo1 is highly expressed in skeletal MuSCs and prevents their precocious activation. Loss of Piezo1 increases Ca2+ influx into MuSCs, which induces NOX4 expression via PKC, leading to enhanced ROS generation. Inactivation of Piezo1 depletes the MuSC pool and causes P53-dependent senescence of MuSCs. ROS scavenging in Piezo1-deficient MuSCs prevents P53 accumulation. Inhibition of P53 mitigates skeletal muscle regeneration defects in mice with Piezo1-deficient MuSCs.
Collapse
Affiliation(s)
- Yundong Peng
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Jingjing Du
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Xinyue Guo
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Andre Schneider
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D'Andrea P, Lorenzon P, Bernareggi A. "Time window" effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 2021; 233:e13702. [PMID: 34097801 PMCID: PMC9286833 DOI: 10.1111/apha.13702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Aim Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. Methods Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. Results Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. Conclusion Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.
Collapse
Affiliation(s)
| | - Arthur Giniatullin
- Department of Physiology Kazan State Medical University Kazan Russia
- Laboratory of Biophysics of Synaptic Processes Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of RAS” Kazan Russia
| | | | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Marina Sciancalepore
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
- Institute of Fundamental Medicine and Biology Federal University Kazan Russia
| | - Paola D'Andrea
- Department of Life Sciences University of Trieste Trieste Italy
| | - Paola Lorenzon
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Annalisa Bernareggi
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| |
Collapse
|
6
|
Xing HY, Liu N, Zhou MW. Satellite cell proliferation and myofiber cross-section area increase after electrical stimulation following sciatic nerve crush injury in rats. Chin Med J (Engl) 2020; 133:1952-1960. [PMID: 32826459 PMCID: PMC7462209 DOI: 10.1097/cm9.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Electrical stimulation has been recommended as an effective therapy to prevent muscle atrophy after nerve injury. However, the effect of electrical stimulation on the proliferation of satellite cells in denervated muscles has not yet been fully elucidated. This study was aimed to evaluate the changes in satellite cell proliferation after electrical stimulation in nerve injury and to determine whether these changes are related to the restoration of myofiber cross-section area (CSA). METHODS Sciatic nerve crush injury was performed in 48 male Sprague-Dawley rats. In half (24/48) of the rats, the gastrocnemius was electrically stimulated transcutaneously on a daily basis after injury, while the other half were not stimulated. Another group of 24 male Sprague-Dawley rats were used as sham operation controls without injury or stimulation. The rats were euthanized 2, 4, and 6 weeks later. After 5-bromo-2'-deoxyuridine (BrdU) labeling, the gastrocnemia were harvested for the detection of paired box protein 7 (Pax7), BrdU, myofiber CSA, and myonuclei number per fiber. All data were analyzed using two-way analysis of variance and Bonferroni post-hoc test. RESULTS The percentages of Pax7-positive nuclei (10.81 ± 0.56%) and BrdU-positive nuclei (34.29 ± 3.87%) in stimulated muscles were significantly higher compared to those in non-stimulated muscles (2.58 ± 0.33% and 1.30 ± 0.09%, respectively, Bonferroni t = 15.91 and 18.14, P < 0.05). The numbers of myonuclei per fiber (2.19 ± 0.24) and myofiber CSA (1906.86 ± 116.51 μm) were also increased in the stimulated muscles (Bonferroni t = 3.57 and 2.73, P < 0.05), and both were positively correlated with the Pax7-positive satellite cell content (R = 0.52 and 0.60, P < 0.01). There was no significant difference in the ratio of myofiber CSA/myonuclei number per fiber among the three groups. CONCLUSIONS Our results indicate that satellite cell proliferation is promoted by electrical stimulation after nerve injury, which may be correlated with an increase in myonuclei number and myofiber CSA.
Collapse
Affiliation(s)
- Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | | | | |
Collapse
|