1
|
Chen CF, Li HP, Chao YH, Tu MY, Yen CC, Lan YW, Yang SH, Chong KY, Lin CC, Chen CM. Suppression of Dendritic Cell Maturation by Kefir Peptides Alleviates Collagen-Induced Arthritis in Mice. Front Pharmacol 2021; 12:721594. [PMID: 34675803 PMCID: PMC8523924 DOI: 10.3389/fphar.2021.721594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
Arthritis is a disorder that is characterized by joint inflammation and other symptoms. Rheumatoid arthritis (RA), an autoimmune disease, is one of the most common arthritis in worldwide. Inflammation of the synovium is the main factor that triggers bone erosion in the joints in RA, but the pathogenesis of RA is not clearly understood. Kefir grain-fermented products have been demonstrated to enhance immune function and exhibit immune-modulating bioactivities. This study aims to explore the role of kefir peptides (KPs) on the regulation of dendritic cell, which are found in RA synovial fluid, and the protection effects of KPs on mice with collagen-induced arthritis (CIA). Immature mouse bone marrow-derived dendritic cells (BMDCs) were treated with KPs (2.2 and 4.4 mg/ml) and then exposed to lipopolysaccharide (LPS) to study the immune regulation function of KPs in dendritic cells. Mice with CIA (n = 5 per group) were orally administrated KPs (3.75 and 7.5 mg/day/kg) for 21 days and therapeutic effect of KPs on mice with arthritis were assessed. In this study, we found that KPs could inhibit surface molecule expression, reduce inflammatory cytokine release, and repress NF-κB and MAPK signaling in LPS-stimulated mouse BMDCs. In addition, a high dose of KPs (7.5 mg/kg) significantly alleviated arthritis symptoms, decreased inflammatory cytokine expression, suppressed splenic DC maturation and decrease the percentage of Th1 and Th17 in the spleens on mice with CIA. Our findings demonstrated that KPs ameliorate CIA in mice through the mechanism of suppressing DC maturation and inflammatory cytokine releases.
Collapse
Affiliation(s)
- Chien-Fu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hsin-Pei Li
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Min-Yu Tu
- Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, Taiwan.,Department of Health Business Administration, Meiho University, Pingtung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Internal Medicine, China Medical University Hospital, and College of Health Care, China Medical University, Taichung, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science and Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, and Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Lee YS, Saxena V, Bromberg JS, Scalea JR. G-CSF promotes alloregulatory function of MDSCs through a c-Kit dependent mechanism. Cell Immunol 2021; 364:104346. [PMID: 33848847 DOI: 10.1016/j.cellimm.2021.104346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that expand in inflammatory conditions including transplantation. MDSCs may be capable of controlling rejection. The critical mechanisms underlying MDSC mediated alloregulation remain unexplored. G-CSF potently stimulates MDSC expansion. We hypothesized that G-CSF-induced MDSCs use a novel mechanism to suppress T cell responses. G-CSF promoted expansion of MDSCs and enhanced their suppressive function against T cell proliferation. Gene expression analysis revealed MDSCs expanded with G-CSF upregulated immune-related genes, but downregulated proliferation-related genes when compared to naïve control MDSCs. The KIT oncogene, encoding the c-Kit (CD117) transmembrane tyrosine kinase receptor, was the most significantly increased in MDSCs expanded with G-CSF. c-Kit inhibition with both imatinib and monoclonal blocking antibody reduced expression of ARG-1, iNOS, PD-L1, and SAA3. Further, imatinib also reduced MDSC-mediated T cell suppression in vitro. Modulation of c-Kit activity may represent a therapeutic target for alloregulatory MDSCs.
Collapse
Affiliation(s)
- Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Joseph R Scalea
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States.
| |
Collapse
|