1
|
Zhao C, Xiao R, Jin H, Li X. The immune microenvironment of lung adenocarcinoma featured with ground-glass nodules. Thorac Cancer 2024; 15:1459-1470. [PMID: 38923346 PMCID: PMC11219292 DOI: 10.1111/1759-7714.15380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Early-stage lung cancer is now more commonly identified in the form of ground-glass nodules (GGNs). Presently, the treatment of lung cancer with GGNs mainly depends on surgery; however, issues still exist such as overtreatment and delayed treatment due to the nonuniform standard of follow-up. Therefore, the discovery of a noninvasive treatment could expand the treatment repertoire of ground-glass nodular lung cancer and benefit the prognosis of patients. Immunotherapy has recently emerged as a new promising approach in the field of lung cancer treatment. Thus, this study presents a comprehensive review of the immune microenvironment of lung cancer with GGNs and describes the functions and characteristics of various immune cells involved, aiming to provide guidance for the clinical identification of novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Changtai Zhao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Rongxin Xiao
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Hongming Jin
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| | - Xiao Li
- Department of Thoracic SurgeryThoracic Oncology Institute, Peking University People's HospitalBeijingChina
| |
Collapse
|
2
|
Høye E, Dagenborg VJ, Torgunrud A, Lund-Andersen C, Fretland ÅA, Lorenz S, Edwin B, Hovig E, Fromm B, Inderberg EM, Greiff V, Ree AH, Flatmark K. T cell receptor repertoire sequencing reveals chemotherapy-driven clonal expansion in colorectal liver metastases. Gigascience 2022; 12:giad032. [PMID: 37161965 PMCID: PMC10170408 DOI: 10.1093/gigascience/giad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Colorectal liver metastasis (CLM) is a leading cause of colorectal cancer mortality, and the response to immune checkpoint inhibition (ICI) in microsatellite-stable CRC has been disappointing. Administration of cytotoxic chemotherapy may cause increased density of tumor-infiltrating T cells, which has been associated with improved response to ICI. This study aimed to quantify and characterize T-cell infiltration in CLM using T-cell receptor (TCR) repertoire sequencing. Eighty-five resected CLMs from patients included in the Oslo CoMet study were subjected to TCR repertoire sequencing. Thirty-five and 15 patients had received neoadjuvant chemotherapy (NACT) within a short or long interval, respectively, prior to resection, while 35 patients had not been exposed to NACT. T-cell fractions were calculated, repertoire clonality was analyzed based on Hill evenness curves, and TCR sequence convergence was assessed using network analysis. RESULTS Increased T-cell fractions (10.6% vs. 6.3%) were detected in CLMs exposed to NACT within a short interval prior to resection, while modestly increased clonality was observed in NACT-exposed tumors independently of the timing of NACT administration and surgery. While private clones made up >90% of detected clones, network connectivity analysis revealed that public clones contributed the majority of TCR sequence convergence. CONCLUSIONS TCR repertoire sequencing can be used to quantify T-cell infiltration and clonality in clinical samples. This study provides evidence to support chemotherapy-driven T-cell clonal expansion in CLM in a clinical context.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Vegar J Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Annette Torgunrud
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Åsmund A Fretland
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Else M Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Anne H Ree
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| |
Collapse
|
3
|
Song C, Pan W, Brown B, Tang C, Huang Y, Chen H, Peng N, Wang Z, Weber D, Byrne-Steele M, Wu H, Liu H, Deng Y, He N, Li S. Immune repertoire analysis of normal Chinese donors at different ages. Cell Prolif 2022; 55:e13311. [PMID: 35929064 DOI: 10.1111/cpr.13311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES This study investigated the characteristics of the immune repertoire in normal Chinese individuals of different ages. MATERIALS AND METHODS In this study, all seven receptor chains from both B and T cells in peripheral blood of 16 normal Chinese individuals from two age groups were analyzed using high-throughput sequencing and dimer-avoided multiplex PCR amplification. Normal in this study is defined as no chronic, infectious or autoimmune disease within 6 months prior to blood draw. RESULTS We found that compared with the younger group, the clonal expression of T-cell receptor repertoire increased in the older group, while diversity decreased. In addition, we found that the T-cell receptor repertoire was more significantly affected by age than the B-cell receptor repertoire, including significant differences in the use of the unique TCR-alpha and TCR-beta V-J gene combinations, in the two groups of normal participants. We further analyzed the degree of complementarity determining region 3 sequence sharing between the two groups, and found shared TCR-alpha, TCR-gamma, immunoglobulin-kappa and immunoglobulin-lambda chain complementarity determining region 3 sequences in all subjects. CONCLUSION Taken together, our study gives us a better understanding of the immune repertoire of different normal Chinese people, and these results can be applied to the treatment of age-related diseases. Immune repertoire analysis also allows us to observe participant's wellness, aiding in early-stage diagnosis.
Collapse
Affiliation(s)
- Cailing Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,Nanjing ARP Biotechnology Co., Ltd., Nanjing, China
| | | | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd., Nanjing, China
| | - Yunqi Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Houao Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nan Peng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhe Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,Guangdong Provincial Hospital of Chinese Medicine & Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | | | | | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,Nanjing ARP Biotechnology Co., Ltd., Nanjing, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
4
|
Liu D, Lin S, Li Y, Zhou T, Hu K, Li Q. Network Pharmacology and Experimental Verification to Explore the Potential Mechanism of Yin-Huo-Tang for Lung Adenocarcinoma Recurrence. Drug Des Devel Ther 2022; 16:375-395. [PMID: 35210754 PMCID: PMC8860994 DOI: 10.2147/dddt.s343149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Yin-Huo-Tang (YHT) is a classic traditional Chinese prescription, used to prevent lung adenocarcinoma (LUAD) relapse by "nourishing yin and clearing heat". In this study, the mechanism of YHT in LUAD recurrence was investigated. METHODS Firstly, the bioactive compounds and targets of YHT, as well as related targets of LUAD recurrence, were collected from public databases. The protein-protein interaction network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to find the pivotal compounds, hub genes, functional annotation and main pathways. Subsequently, RNA sequencing of recurrent tumor tissues from Lewis lung carcinoma mice treated with YHT was used to explore the main pathways. At the same time, pathways screened by network pharmacology and RNA sequencing analysis were considered the most important pathways. Finally, liquid chromatography mass spectrometry was used to validate the pivotal active ingredients. Molecular docking technology was performed to validate the binding association between the hub genes and the pivotal active ingredients. PCR and WB analysis were used to validate the main pathways. RESULTS There were 128 active compounds and 419 targets interacting with YHT and LUAD recurrence. Network analysis identified 4 pivotal compounds, 28 hub genes and 30 main pathways. Sphingolipid signaling pathway was the common main pathway in network pharmacology and RNA sequencing results. The hub gene related to the sphingolipid signaling pathway was S1PR5. Qualitative phytochemical analysis confirmed the presence of 3 pivotal compounds, namely stigmasterol, nootkatone and ergotamine. The molecular docking verified that the pivotal compounds could good affinity with S1PR5. The PCR and WB analysis verified YHT suppressed Lewis lung cancer cells proliferation and migration by inhibiting the sphingolipid signaling pathway. CONCLUSION The potential mechanism and therapeutic effect of YHT against the recurrence of LUAD may be ascribed to inhibition of the sphingolipid signaling pathway.
Collapse
Affiliation(s)
- Dianna Liu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| | - Shicheng Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yuan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tian Zhou
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People’s Republic of China
| |
Collapse
|
5
|
Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs 2022; 14:2020082. [PMID: 35104168 PMCID: PMC8812776 DOI: 10.1080/19420862.2021.2020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation. We further evaluate the opportunities and challenges of using biopharmaceutical informatics for drug discovery and optimization. Finally, we discuss the potential of developability guidelines based on in silico metrics that can be used for the assessment of antibody stability and manufacturability.
Collapse
Affiliation(s)
- Rahul Khetan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | | | - Uddipan Kar
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew C R Martin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
6
|
Gu W, Hu M, Wang W, Shi C, Mei J. Development and Validation of a Novel Nomogram for Predicting Tumor-Distant-Metastasis in Patients with Early T1-2 Stage Lung Adenocarcinoma. Ther Clin Risk Manag 2020; 16:1213-1225. [PMID: 33328735 PMCID: PMC7735943 DOI: 10.2147/tcrm.s272748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Distant metastasis in early T1-2 (diameter≤5 cm) stage lung adenocarcinoma (ET-LUAD) patients largely affect treatment strategies in clinical practice. However, the associated mechanism remains unclear and related studies is less. This study aimed to establish and validate a novel nomogram to predict the risk of distant metastasis in ET-LUAD. Methods A total of 258 patients diagnosed with ET-LUAD and not receiving any treatment were recruited into this study. The patients were randomly divided into a training cohort and validation cohort in a ratio of 1:2. Univariate and multivariate logistic regression analysis was used to select the most significant predictive risk factors associated with distant metastasis in the training cohort. The established nomogram was validated by the consistency index (C-index), calibration curve, and decision curve analysis (DCA). Results There were 124 patients with confirmed distant metastasis and 134 patients with non-distant metastases ET-LUAD were enrolled in the study. Multivariate logistic hazards regression analysis identified independent risk factors associated with distant metastasis to include platelet-to-lymphocyte ratios (PLR), lactate dehydrogenase (LDH), neural-specific enolase (NSE), carcinoembryonic antigen (CEA) and cytokeratin 19 fragments (Cyfra211), which were included in the establishment of the nomogram. The nomogram achieved a high consistency (C-index=0.792), good calibration, and high clinical application value in the validation cohort. Conclusion The established nomogram can be used to predict distant metastasis in high-risk ET-LUAD nonmetastasis patients and can also be used by doctors to guide preventive and individualized treatment for ET-LUAD patients.
Collapse
Affiliation(s)
- WeiGuo Gu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - MingBin Hu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - WeiJia Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chao Shi
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - JinHong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|