1
|
Rodrigues P, Rizaev JA, Hjazi A, Altalbawy FMA, H M, Sharma K, Sharma SK, Mustafa YF, Jawad MA, Zwamel AH. Dual role of microRNA-31 in human cancers; focusing on cancer pathogenesis and signaling pathways. Exp Cell Res 2024; 442:114236. [PMID: 39245198 DOI: 10.1016/j.yexcr.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Kirti Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India.
| | - Satish Kumar Sharma
- Vice Chancellor of Department of Pharmacy (Pharmacology), The Glocal University, Saharanpur, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
3
|
Lukosevicius R, Alzbutas G, Varkalaite G, Salteniene V, Tilinde D, Juzenas S, Kulokiene U, Janciauskas D, Poskiene L, Adamonis K, Kiudelis G, Kupcinskas J, Skieceviciene J. 5'-Isoforms of miR-1246 Have Distinct Targets and Stronger Functional Impact Compared with Canonical miR-1246 in Colorectal Cancer Cells In Vitro. Int J Mol Sci 2024; 25:2808. [PMID: 38474054 DOI: 10.3390/ijms25052808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease involving genetic and epigenetic factors, such as miRNAs. Sequencing-based studies have revealed that miRNAs have many isoforms (isomiRs) with modifications at the 3'- and 5'-ends or in the middle, resulting in distinct targetomes and, consequently, functions. In the present study, we aimed to evaluate the putative targets and functional role of miR-1246 and its two 5'-isoforms (ISO-miR-1246_a and ISO-miR-1246_G) in vitro. Commercial Caco-2 cells of CRC origin were analyzed for the expression of WT-miR-1246 and its 5'-isoforms using small RNA sequencing data, and the overabundance of the two miR-1246 isoforms was determined in cells. The transcriptome analysis of Caco-2 cells transfected with WT-miR-1246, ISO-miR-1246_G, and ISO-miR-1246_a indicated the minor overlap of the targetomes between the studied miRNA isoforms. Consequently, an enrichment analysis showed the involvement of the potential targets of the miR-1246 isoforms in distinct signaling pathways. Cancer-related pathways were predominantly more enriched in dysregulated genes in ISO-miR-1246_G and ISO-miR-1246_a, whereas cell cycle pathways were more enriched in WT-miR-1246. The functional analysis of WT-miR-1246 and its two 5'-isoforms revealed that the inhibition of any of these molecules had a tumor-suppressive role (reduced cell viability and migration and promotion of early cell apoptosis) in CRC cells. However, the 5'-isoforms had a stronger effect on viability compared with WT-miR-1246. To conclude, this research shows that WT-miR-1246 and its two 5'-isoforms have different targetomes and are involved in distinct signaling pathways but collectively play an important role in CRC pathogenesis.
Collapse
Affiliation(s)
- Rokas Lukosevicius
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Alzbutas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Greta Varkalaite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Violeta Salteniene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Deimante Tilinde
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Biotechnology, Life Science Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Dainius Janciauskas
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Kestutis Adamonis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Kiudelis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
4
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
5
|
Cao Y, Li J, Zhang G, Fang H, Du Y, Liang Y. KLF15 transcriptionally activates LINC00689 to inhibit colorectal cancer development. Commun Biol 2024; 7:130. [PMID: 38273088 PMCID: PMC10810960 DOI: 10.1038/s42003-023-05757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer is a grievous health concern, we have proved long non-coding RNA LINC00689 is considered as a potential diagnosis biomarker for colorectal cancer, and it is necessary to further investigate its upstream and downstream mechanisms. Here, we show that KLF15, a transcription factor, exhibits the reduced expression in colorectal cancer. KLF15 suppresses the proliferative and metastatic capacities of colorectal cancer cells both in vitro and in vivo by transcriptionally activating LINC00689. Subsequently, LINC00689 recruits PTBP1 protein to enhance the stability of LATS2 mRNA in the cytoplasm. This stabilization causes the suppression of the YAP1/β-catenin pathway and its target downstream genes. Our findings highlight a regulatory network involving KLF15, LINC00689, PTBP1, LATS2, and the YAP1/β-catenin pathway in colorectal cancer, shedding light on potential therapeutic targets for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yan Cao
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Gang Zhang
- Department 2 of Gastrointestinal Surgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou People's Hospital, Haikou, 570208, Hainan Province, PR China
| | - Hao Fang
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yongliang Du
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yan Liang
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
6
|
Chang PK, Yen IC, Tsai WC, Lee SY. Polygonum barbatum extract reduces colorectal cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition via YAP and β-catenin pathway regulation. Sci Rep 2023; 13:18368. [PMID: 37884620 PMCID: PMC10603200 DOI: 10.1038/s41598-023-45630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide with novel therapeutic developmental challenges. Polygonum barbatum has anticancer potential, but its mechanism(s) are unclear. This study investigates the inhibitory effect of P. barbatum on human CRC cells. Polygonum barbatum extract (PBE) and quercetin standard HPLC fingerprints were determined using analytical RP-HPLC and evaluations were completed using the human colon cancer cell line HCT-116 (KRASG13D mutation) and HT-29 (BRAF mutation) cells. Post-PBE treatment, cell viability, colony formation, migration, invasion, and apoptosis, as well as changes in the whole-transcriptome of cells were analyzed. PBE significantly reduced CRC cell growth, migration, and invasion, and the genes responsible for extracellular matrix (ECM) organization, cell motility, and cell growth were suppressed by PBE. The differentially expressed genes revealed that PBE treatment exerted a significant effect on the ECM interaction and focal adhesion pathways. Epithelial-to-mesenchymal transition markers, N-cadherin, vimentin, SLUG, and SNAIL, were shown to be regulated by PBE. These effects were associated with blockade of the Yes-associated protein and the GSK3β/β-catenin axis. PBE exerts a significant inhibitory effect on CRC cells and may be applicable in clinical trials.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Tsai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
7
|
Yang X, Du Y, Luo L, Xu X, Xiong S, Yang X, Guo L, Liang T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. Int J Mol Sci 2023; 24:13909. [PMID: 37762212 PMCID: PMC10530696 DOI: 10.3390/ijms241813909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated expression of specific non-coding RNAs (ncRNAs) has been strongly linked to tumorigenesis, cancer progression, and therapeutic resistance. These ncRNAs can act as either oncogenes or tumor suppressors, thereby serving as valuable diagnostic and prognostic markers. Numerous studies have implicated the participation of ncRNAs in the regulation of diverse signaling pathways, including the pivotal Wnt/β-catenin signaling pathway that is widely acknowledged for its pivotal role in embryogenesis, cellular proliferation, and tumor biology control. Recent emerging evidence has shed light on the capacity of ncRNAs to interact with key components of the Wnt/β-catenin signaling pathway, thereby modulating the expression of Wnt target genes in cancer cells. Notably, the activity of this pathway can reciprocally influence the expression levels of ncRNAs. However, comprehensive analysis investigating the specific ncRNAs associated with the Wnt/β-catenin signaling pathway and their intricate interactions in cancer remains elusive. Based on these noteworthy findings, this review aims to unravel the intricate associations between ncRNAs and the Wnt/β-catenin signaling pathway during cancer initiation, progression, and their potential implications for therapeutic interventions. Additionally, we provide a comprehensive overview of the characteristics of ncRNAs and the Wnt/β-catenin signaling pathway, accompanied by a thorough discussion of their functional roles in tumor biology. Targeting ncRNAs and molecules associated with the Wnt/β-catenin signaling pathway may emerge as a promising and effective therapeutic strategy in future cancer treatments.
Collapse
Affiliation(s)
- Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| |
Collapse
|
8
|
Liu J, Ye L, Lin K, Zhong T, Luo J, Wang T, Suo L, Mo Q, Li S, Chen Q, Yu Y. miR-4299 inhibits tumor progression in pancreatic cancer through targeting ADAM17. Mol Cell Biochem 2023; 478:1727-1742. [PMID: 36565360 DOI: 10.1007/s11010-022-04617-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignant tumors in human beings. Tumor capacity of evading immune-mediated lysis is a critical step in PC malignant progression. We aimed to evaluate the underlying regulatory mechanism of miR-4299 in the proliferation, metastasis, apoptosis, and immune escape in PC. miR-4299 and ADAM17 expressions in PC tissues and cell lines were detected using qRT-PCR. MTT assay and flow cytometry were used to detect cell viability and apoptosis, respectively. A luciferase reporter gene assay was conducted to confirm the targeted relationship between miR-4299 and ADAM17. Xenograft tumors in nude mice were used to detect tumorigenesis in vivo. PC cells were co-cultured with NK cells for determining the immune escape ability. NKG2D-positive rate of NK cells was detected using flow cytometry; NK cell-killing ability was detected using MTT assay. miR-4299 was downregulated in PC tissues and cell lines. miR-4299 inhibited PC cell proliferation and invasion, promoted cell apoptosis, and reduced PC tumor growth in vivo. ADAM17 3'UTR directly bound to miR-4299. ADAM17 overexpression could reverse miR-4299 effects on PC cell viability, invasion, apoptosis, and immune escape. miR-4299 exerted suppressive effects on PC cell proliferation, invasion, and immune escape via targeting ADAM17 expression. This study revealed a novel miR-4299/ADAM17 axis-modulating PC progression and proposed to concern the immune regulatory mechanism of miRNAs in PC development.
Collapse
Affiliation(s)
- Junhong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Lin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Kangqiang Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Tieshan Zhong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Jiguang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Liya Suo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qingrong Mo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Shuqun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
9
|
Maggisano V, Capriglione F, Verrienti A, Celano M, Sponziello M, Pecce V, Russo D, Durante C, Bulotta S. Expression of miR-31-5p affects growth, migration and invasiveness of papillary thyroid cancer cells. Endocrine 2023; 79:517-526. [PMID: 36474133 DOI: 10.1007/s12020-022-03267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE In this study, we evaluated the biological role of miRNA-31-5p in papillary thyroid cancer (PTC). METHODS By using the real-time PCR, we measured miRNA-31-5p expression levels in 25 PTC tissues and in two human PTC cell lines (K1 and TPC-1). Then, K1 cells were transiently transfected with mirVana inhibitor or mirVana mimic to miRNA-31-5-p. Cell proliferation was determined by MTT and colony formation assays. The in vitro metastatic ability of thyroid cancer cells was evaluated by adhesion, migration and invasion assays. Epithelial mesenchymal transition (EMT) and Hippo pathway related gene and protein levels were evaluated by using the TaqMan™ Gene Expression Assays and western blot analysis, respectively. RESULTS We found a significant increase of miR-31-5-p expression in tumor tissue and in K1 cells harboring the BRAF p.V600E mutation. Knockdown of miR-31-5p determined a reduction of cell proliferation, associated with a significant decrease in cell adhesion, migration and invasion properties. A downregulation of EMT markers and YAP/β-catenin axis was also observed. CONCLUSIONS Our findings suggest that miRNA-31-5p acts as oncogenic miRNA in human thyrocytes and its overexpression may be involved in the BRAF-related tumorigenesis in PTCs, providing new understanding into its pathological role in PTC progression and invasiveness.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Francesca Capriglione
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
10
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
11
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
13
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
14
|
Chen Y, Ji S, Ying J, Sun Y, Liu J, Yin G. KRT6A expedites bladder cancer progression, regulated by miR-31-5p. Cell Cycle 2022; 21:1479-1490. [PMID: 35311447 PMCID: PMC9278449 DOI: 10.1080/15384101.2022.2054095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Bladder cancer is one of the most severe life-threatening illnesses worldwide. To contribute to a solution to this public health issue, here, we sought to identify a novel biomarker for the early diagnosis of bladder tumors. We conducted RNA sequence analysis utilizing samples from tumorous tissue and adjacent healthy tissue in bladder cancer patients and found that KRT6A was upregulated in bladder tumor tissues, suggesting that it might be a candidate for involvement in bladder tumorigenesis. Accordingly, we performed a series of experiments to further verify the role of KRT6A in bladder tumor progression. Our results revealed that KRT6A promoted bladder tumor cell viability, proliferation, and adhesion, while diminishing bladder tumor cell apoptosis. We also focused on the role of epigenetics in bladder tumors and verified that KRT6A was a miR-31-5p target gene, and its positive effect on bladder tumor progression was relieved by miR-31-5p. Overall, this study sheds new light regarding a novel oncogenic regulatory axis, KRT6A/miR-31-5p, which is related to bladder tumor growth.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Geriatric (Urology), Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiben Ji
- Department of Urology, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Jianxin Ying
- Department of Urology, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Yongchang Sun
- Department of Urology, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Jun Liu
- Department of Urology, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Guohong Yin
- Department of Urology, Wuhan Hankou Hospital, Wuhan, Hubei, China
- CONTACT Guohong Yin Department of Urology, Wuhan Hankou Hospital, No. 7, Erqi Side Road, Jiangan District, Wuhan, Hubei430030, China
| |
Collapse
|
15
|
Liu C, Zou X, Song G, Fan X, Peng S, Zhang S, Geng X, zhou X, Wang T, Cheng W, Zhu W. Comprehensive analysis of negatively correlated miRNA-mRNA regulatory pairs associated with microsatellite instability in colorectal cancer. Cancer Biomark 2022; 34:471-483. [PMID: 35253734 DOI: 10.3233/cbm-210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Several studies have demonstrated that microRNAs (miRNAs) and target mRNAs are associated with different frequencies of microsatellite instability. OBJECTIVE: The study aimed to elucidate the profiles of miRNAs and target mRNAs expression and their associations with the phenotypic hallmarks of microsatellite instability in colorectal cancers (CRC) by integrating transcriptomic, immunophenotype, methylation, mutation, and survival data. METHODS: Differentially expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) were screened out and then the miRNA-mRNA regulatory pairs were identified through two databases. We verified that the expression levels were detected in 40 microsatellite instable (MSI) and 40 microsatellite stable (MSS) CRC samples and used the logistic regression and the Cox regression method to evaluate the diagnostic and prognostic value of negative regulatory pairs respectively. RESULTS: The best diagnostic model that combines miR-31-5p, PLAGL2, miR-361-5p, and RAB27B, which were associated with immune microenvironment, tumor mutation burden (TMB), and overall DNA methylation, could significantly predict microsatellite instability in colon tissues. MiR-31-5p and RAB27B could also predict the overall survival of MSS CRCs. CONCLUSION: This study generated a predictive model of the combination of miRNAs and mRNAs to distinguish MSI versus MSS CRCs and elaborated their potential molecular mechanisms and biological functions.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Gastroenterology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Xuan Zou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guoxin Song
- Department of Pathology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Xingchen Fan
- Department of Oncology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Shuang Peng
- Department of Oncology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Xiangnan Geng
- Department of Clinical Engineer, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Xin zhou
- Department of Oncology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Tongshan Wang
- Department of Oncology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Wenfang Cheng
- Department of Gastroenterology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, Jiangsu Province People’s Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Comprehensive Analysis of Enhancer RNAs Identifies LINC00689 and ELFN1-AS1 as Novel Prognostic Biomarkers in Uveal Melanoma. DISEASE MARKERS 2022; 2022:5994800. [PMID: 35251374 PMCID: PMC8892034 DOI: 10.1155/2022/5994800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Enhancer RNAs (eRNAs) have emerged as key players in the pathology of several tumors, including uveal melanoma. Here, we aimed to explore the prognostic values of eRNAs in uveal melanoma (UVM) patients. The expressing data and survival data of UVM patients were downloaded from TCGA and GSE22138 datasets. The Kaplan-Meier methods with the log-rank test were applied to screen survival-related eRNAs in UVM. GEPIA was applied to analyze the associations between expressions of eRNA and disease-free survival. KEGG assays were applied to explore the potential signaling pathways of the key eRNA. The prognostic values of eRNAs were further explored by multivariate assays by the R package survival. The eRNAs were validated in pan-cancer. In this study, we identified 89 survival-related eRNAs in UVM based on TCGA datasets. Based on GSE22138 datasets, we found 27 survival-related eRNAs in UVM. Only two eRNAs (LINC00689 and ELFN1-AS1) were overlapped in both two datasets. The results of multivariate analysis revealed that both LINC00689 and ELFN1-AS1 were independent prognostic factors in UVM patients. The pan-cancer validation results further confirmed the prognostic values of LINC00689 and ELFN1-AS1 in eight tumors. Overall, we identified two novel UVM-related eRNAs, LINC00689 and ELFN1-AS1 which may serve as prognostic and diagnostic biomarkers of UVM patients for clinical decision-making.
Collapse
|
17
|
Raei N, Safaralizadeh R, Hesseinpourfeizi M, Yazdanbod A, Pourfarzi F, Latifi-Navid S. Crosstalk between lncRNAs and miRNAs in gastrointestinal cancer drug resistance. Life Sci 2021; 284:119933. [PMID: 34508759 DOI: 10.1016/j.lfs.2021.119933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/09/2023]
Abstract
Gastrointestinal cancers are one of the most prevalent malignancies worldwide. Dysregulation of lncRNAs by epigenetic alteration is crucial in gastrointestinal carcinogenesis. Epigenetic alteration includes DNA methylation, chromatin remodeling, histone modifications, and deregulated-gene expression by miRNAs. LncRNAs are involved in biological processes, including, uncontrolled cell division, migration, invasion, and resistance to apoptosis and drugs. Multiple-drug resistance (MDR) is a crucial obstacle in effective chemotherapy for gastrointestinal cancers. MDR can be associated with the prognosis and diagnosis of patients receiving chemotherapeutic agents (i.e. cisplatin, oxaliplatin, platinum, 5-fluorouracil, gefitinib, methotrexate, taxol, cetuximab, docetaxel, and gemcitabine). In this review, we focused on recently known lncRNAs and their relation with miRNAs and chemotherapeutic drugs, and their modulation in gastrointestinal cancers. Moreover, we mentioned the future prospective and clinical application of lncRNAs as a critical indicator and biomarker in diagnosis, prognosis, staging, grading, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Negin Raei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
18
|
Zhang J, Yang ZM, Huang Y, Wang KN, Xie Y, Yang N. LncRNA GAS5 inhibits the proliferation and invasion of ovarian clear cell carcinoma via the miR-31-5p/ARID1A axis. Kaohsiung J Med Sci 2021; 37:940-950. [PMID: 34414664 DOI: 10.1002/kjm2.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
To investigate the role of the lncRNA growth arrest special 5 (GAS5) in ovarian clear cell carcinoma (OCCC), we measured the expression of GAS5 and miR-31-5p in OCCC tissue samples and OCCC cell lines using RT-qPCR. MTT and colony formation assays were used to measure cell viability and colony formation ability. Cell invasion was determined by Transwell assays. The binding between GAS5 and miR-31-5p as well as miR-31-5p and ARID1A was determined by dual-luciferase reporter assays. The ARID1A protein levels were detected using western blotting. Kaplan-Meier curves were used for the analysis of the 5-year survival rate of patients with OCCC. GAS5 and ARID1A levels were significantly decreased, while miR-31-5p levels were strongly elevated in the OCCC tissues and cell lines. Patients with lower GAS5/ARID1A levels had shorter overall survival times. Overexpression of GAS5 or inhibition of miR-31-5p suppressed cell viability and invasion of OCCC cells and upregulated the protein levels of ARID1A. Moreover, overexpression of miR-31-5p reversed the effects of overexpression of GAS5. Cotransfection with pcDNA3.1-GAS5 and miR-31-5p inhibitor led to the lowest cell viability and cell invasion rates. A dual-luciferase reporter assay was performed to confirm the target relationship between GAS5 and miR-31-5p, as well as between miR-31-5p and ARID1A. LncRNA GAS5 inhibited cell viability and invasion of OCCC through activation of ARID1A by sponging miR-31-5p.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhong-Mei Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Huang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ka-Na Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nian Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, Ninniri MC, Carru C, Porcu A, Pira G, Uva P, Cossu-Rocca P, De Miglio MR. Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. Int J Mol Sci 2021; 22:1603. [PMID: 33562604 PMCID: PMC7915330 DOI: 10.3390/ijms22041603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Giulia Deiana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Maria Chiara Ninniri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Alberto Porcu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- IRCCS G. Gaslini, 16147 Genoa, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| |
Collapse
|