1
|
Kang S, Ni Y, Lan K, Lv F. Hsa_circ_0008133 contributes to lung cancer progression by promoting glycolysis metabolism through the miR-760/MEX3A axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3014-3025. [PMID: 38317294 DOI: 10.1002/tox.24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lung cancer is a very common cancer with poor prognosis and high mortality. Circular RNAs (circRNAs) have been confirmed to be related to the occurrence of lung cancer, and circ_0008133 has been found to be possibly related to lung cancer. METHODS Expression of circ_0008133, miR-760, and mex-3 RNA binding family member A (MEX3A) messenger RNA (mRNA) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony number, migration, and invasion were assessed using cell counting kit-8 (CCK8), colony formation, wound healing, and transwell assays. Glucose consumption and lactate production were detected using commercial kits. Protein expression was measured using western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between miR-760 and circ_0008133 or MEX3A. The effects of circ_0008133 knockdown on tumor growth in vivo were examined by the nude mice expriment. Immunohistochemistry (IHC) assay analyzed Ki-67 expression. RESULTS Circ_0008133 and MEX3A were markedly boosted in lung cancer tissues and cells. Circ_0008133 knockdown decreased lung cancer cell viability, glucose consumption, lactate production, colony formation, migration, and invasion. In mechanism, circ_0008133 might positively regulate MEX3A expression by sponging miR-760. Additionally, knockdown of circ_0008133 inhibited tumor growth in vivo. CONCLUSION Circ_0008133 accelerated the progression of lung cancer by promoting glycolysis metabolism through the miR-760/MEX3A axis.
Collapse
Affiliation(s)
- Shuhong Kang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| | - Ke Lan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| | - Feng Lv
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| |
Collapse
|
2
|
Ma P, Yu H, Zhu M, Liu L, Cheng L, Han Z, Jin W. NCAPD2 promotes the malignant progression of oral squamous cell carcinoma via the Wnt/β-catenin pathway. Cell Cycle 2024; 23:588-601. [PMID: 38743408 PMCID: PMC11135826 DOI: 10.1080/15384101.2024.2348918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/β-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ping Ma
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Huajiao Yu
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Mingda Zhu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Liu
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Luyao Cheng
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Zhengxue Han
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wulong Jin
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
3
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
4
|
Targeting the "undruggable": RNA-binding proteins in the spotlight in cancer therapy. Semin Cancer Biol 2022; 86:69-83. [PMID: 35772609 DOI: 10.1016/j.semcancer.2022.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Tumors refractory to conventional therapy belong to specific subpopulations of cancer cells, which have acquired a higher number of mutations/epigenetic changes than the majority of cancer cells. This property provides them the ability to become resistant to therapy. Aberrant expression of certain RNA-binding proteins (RBPs) can regulate the sensitivity of tumor cells to chemotherapeutic drugs by binding to specific regions present in the 3´-UTR of certain mRNAs to promote or repress mRNA translation or by interacting with other proteins (including RBPs) and non-coding RNAs that are part of ribonucleoprotein complexes. In particular, an increasing interest in the RBPs involved in chemoresistance has recently emerged. In this review, we discuss how RBPs are not only affected by chemotherapeutic treatments, but also play an active role in therapeutic responses via the direct modulation of crucial cancer-related proteins. A special focus is being placed on the development of therapeutic strategies targeting these RBPs.
Collapse
|
5
|
Jiang Z, Sun Z, Hu J, Li D, Xu X, Li M, Feng Z, Zeng S, Mao H, Hu C. Grass Carp Mex3A Promotes Ubiquitination and Degradation of RIG-I to Inhibit Innate Immune Response. Front Immunol 2022; 13:909315. [PMID: 35865536 PMCID: PMC9295999 DOI: 10.3389/fimmu.2022.909315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
As one of the Mex3 family members, Mex3A is crucial in cell proliferation, migration, and apoptosis in mammals. In this study, a novel gene homologous to mammalian Mex3A (named CiMex3A, MW368974) was cloned and identified in grass carp, which is 1,521 bp in length encoding a putative polypeptide of 506 amino acids. In CIK cells, CiMex3A is upregulated after stimulation with LPS, Z-DNA, and especially with intracellular poly(I:C). CiMex3A overexpression reduces the expressions of IFN1, ISG15, and pro-inflammatory factors IL8 and TNFα; likewise, Mex3A inhibits IRF3 phosphorylation upon treatment with poly(I:C). A screening test to identify potential targets suggested that CiMex3A interacts with RIG-I exclusively. Co-localization analysis showed that Mex3A and RIG-I are simultaneously located in the endoplasmic reticulum, while they rarely appear in the endosome, mitochondria, or lysosome after exposure to poly(I:C). However, RIG-I is mainly located in the early endosome and then transferred to the late endosome following stimulation with poly(I:C). Moreover, we investigated the molecular mechanism underlying CiMex3A-mediated suppression of RIG-I ubiquitination. The results demonstrated that Mex3A truncation mutant (deletion in the RING domain) can still interact physically with RIG-I, but fail to degrade it, suggesting that Mex3A also acts as a RING-type E3 ubiquitin ligase. Taken together, this study showed that grass carp Mex3A can interact with RIG-I in the endoplasmic reticulum following poly(I:C) stimulation, and then Mex3A facilitates the ubiquitination and degradation of RIG-I to inhibit IRF3-mediated innate antiviral immune response.
Collapse
Affiliation(s)
- Zeyin Jiang
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhichao Sun
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
- Human Aging Research Institute, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Jihuan Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Dongming Li
- School of Basic Medical Sciences, Fuzhou Medical University, Fuzhou, China
| | - Xiaowen Xu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Meifeng Li
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhiqing Feng
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zeng
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chengyu Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
- *Correspondence: Chengyu Hu,
| |
Collapse
|
6
|
Pan L, Fan Y, Zhou L. SMYD2
epigenetically activates
MEX3A
and suppresses
CDX2
in colorectal cancer cells to augment cancer growth. Clin Exp Pharmacol Physiol 2022; 49:959-969. [PMID: 35637161 DOI: 10.1111/1440-1681.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lizhen Pan
- Department of Gastroenterology Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou Jiangsu P.R. China
| | - Yuejuan Fan
- Department of Gastroenterology Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou Jiangsu P.R. China
| | - Lei Zhou
- Department of Gastroenterology Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou Jiangsu P.R. China
| |
Collapse
|
7
|
Sun H, Dai J, Chen M, Chen Q, Xie Q, Zhang W, Li G, Yan M. miR-139-5p Was Identified as Biomarker of Different Molecular Subtypes of Breast Carcinoma. Front Oncol 2022; 12:857714. [PMID: 35433464 PMCID: PMC9009410 DOI: 10.3389/fonc.2022.857714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Located on chromosome 11q13.4, miR-139-5p has been confirmed by several studies as a possible attractive biomarker for cancer, including breast cancer, but its mechanism of correlation in different molecular subtypes of breast cancer has not been reported. In this study, comprehensive bioinformatics analysis was used to evaluate the expression of miR-139-5p in different molecular subtypes of breast cancer (luminal A, luminal B, HER2-enriched, and basal-like). The target genes of miR-139-5p were predicted by using an online database TargetScan and miRDB, and three key genes, FBN2, MEX3A, and TPD52, were screened in combination with differentially expressed genes in different molecular subtypes of breast cancer. The expression of the three genes was verified separately, and the genes were analyzed for pathway and functional enrichment. Bone marrow mesenchymal stem cells (BMSC) are another kind of highly plastic cell population existing in bone marrow besides hematopoietic stem cells. BMSC can affect the proliferation and migration of cancer cells, promote the metastasis and development of cancer, and regulate the tumor microenvironment by secreting exosome mirnas, thus affecting the malignant biological behavior of tumor cells. Finally, human bone marrow mesenchymal stem cells exosomes were obtained by ultracentrifugation, and the morphology of exosomes was observed by transmission electron microscopy. The expression of miR-139-5p in normal breast cells MCF-10A, human breast cancer cell line MDA-MB-231 cells, and BMSCs-derived exosomes were compared; the exosomes and MDA-MB-231 cells were co-cultured to observe their effects on the proliferation of the MDA-MB-231 cells. Human bone marrow mesenchymal stem cell-derived exosomes inhibited the growth of breast cancer cells and promoted the expression of FBN2, MEX3A, and TPD52 by transporting miR-139-5p.
Collapse
Affiliation(s)
- Haohang Sun
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
| | - Ji Dai
- Department of General Surgery, Zhenhai District People’s Hospital, Ningbo, China
| | - Mengze Chen
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
| | - Qi Chen
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
| | - Qiong Xie
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
| | - Weijun Zhang
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
| | - Guoqing Li
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
| | - Meidi Yan
- General Surgery I (Thyroid, Breast, Vascular, Hernia Surgery), General Hospital of Zhenhai District People’s Hospital Medical Group, Ningbo, China
- *Correspondence: Meidi Yan,
| |
Collapse
|
8
|
RNA-binding protein MEX3A controls G1/S transition via regulating the RB/E2F pathway in clear cell renal cell carcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:241-255. [PMID: 34976441 PMCID: PMC8703191 DOI: 10.1016/j.omtn.2021.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
MEX3A is an RNA-binding protein that mediates mRNA decay through binding to 3′ untranslated regions. However, its role and mechanism in clear cell renal cell carcinoma remain unknown. In this study, we found that MEX3A expression was transcriptionally activated by ETS1 and upregulated in clear cell renal cell carcinoma. Silencing MEX3A markedly reduced clear cell renal cell carcinoma cell proliferation in vitro and in vivo. Inhibiting MEX3A induced G1/S cell-cycle arrest. Gene set enrichment analysis revealed that E2F targets are the central downstream pathways of MEX3A. To identify MEX3A targets, systematic screening using enhanced cross-linking and immunoprecipitation sequencing, and RNA-immunoprecipitation sequencing assays were performed. A network of 4,000 genes was identified as potential targets of MEX3A. Gene ontology analysis of upregulated genes bound by MEX3A indicated that negative regulation of the cell proliferation pathway was highly enriched. Further assays indicated that MEX3A bound to the CDKN2B 3′ untranslated region, promoting its mRNA degradation. This leads to decreased levels of CDKN2B and an uncontrolled cell cycle in clear cell renal cell carcinoma, which was confirmed by rescue experiments. Our findings revealed that MEX3A acts as a post-transcriptional regulator of abnormal cell-cycle progression in clear cell renal cell carcinoma.
Collapse
|
9
|
Zhou X, Li S, Ma T, Zeng J, Li H, Liu X, Li F, Jiang B, Zhao M, Liu Z, Qin Y. MEX3A knockdown inhibits the tumorigenesis of colorectal cancer via modulating CDK2 expression. Exp Ther Med 2021; 22:1343. [PMID: 34630697 PMCID: PMC8495542 DOI: 10.3892/etm.2021.10778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract and a leading cause of cancer-associated mortality worldwide. Mex-3 RNA binding family member A (MEX3A) promotes the progression of multiple types of cancer, including ovarian and cervical cancer. However, to the best of our knowledge, the role of MEX3A in CRC is not completely understood. Therefore, the present study aimed to investigate the function of MEX3A in CRC. The mRNA and protein expression levels of MEX3A in CRC cells were analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assays were used to measure cell viability. Cell apoptosis and cell cycle distribution were detected via flow cytometry, and CRC cell invasion was analyzed by performing Transwell assays. Moreover, the mitochondrial membrane potential in CRC cells was measured via JC-1 staining. The results of the present study revealed that the expression levels of MEX3A were upregulated in CRC tissues compared with adjacent healthy tissues. MEX3A knockdown notably inhibited CRC cell viability, and induced apoptosis and mitochondrial injury. In addition, MEX3A knockdown markedly induced G1 phase cell cycle arrest in CRC cells via downregulating CDK2 expression. In conclusion, the findings of the present study suggested that MEX3A knockdown may inhibit the tumorigenesis of CRC cells by regulating CDK2 expression. Therefore, MEX3A may serve as a novel target for CRC treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Shaojie Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Tiexiang Ma
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Jian Zeng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Huanyu Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Xiang Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Feng Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Bin Jiang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Ming Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Zhuo Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Yiyu Qin
- Clinical Medical College, Follow-up Research Center, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
10
|
Yan L, Li H, An W, Wei W, Zhang X, Wang L. Mex-3 RNA binding MEX3A promotes the proliferation and migration of breast cancer cells via regulating RhoA/ROCK1/LIMK1 signaling pathway. Bioengineered 2021; 12:5850-5858. [PMID: 34486491 PMCID: PMC8806898 DOI: 10.1080/21655979.2021.1964155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has been known as cancer with high mortality rates. It has been studied that MEX3A (Mex-3 RNA Binding Family Member A) is involved in carcinogenesis by accelerating cancer proliferation and migration. Therefore, this research aimed to study how MEX3A regulates the biological behaviors of breast cancer. Firstly, we used GEPIA and KM-plotter databases to evaluate MEX3A expression in human breast cancer tissue compared to adjacent normal tissue. Immunohistochemistry was employed to assess MEX3A protein expression in clinical specimens. MEX3A mRNA expression level was assessed through quantitative real-time PCR (RT-qPCR). Western blotting was used to detect protein expression. Moreover, Cell Count Kit-8 (CCK-8) assay, wound healing assay and transwell invasion assay were used to determine the proliferation, migration and invasion of breast cancer cells, respectively. Our study found that MEX3A expression level was much higher in human breast cancer tissues as compared to adjacent normal tissues. Similarly, breast cancer cell lines showed higher expression of MEX3A as compared to the normal breast cells. This higher expression of MEX3A was linked with the poor survival of breast cancer. Moreover, we found that overexpression of MEX3A stimulated proliferation and migration in the breast cancer cells. However, inhibition of MEX3A significantly reduced the proliferation and migration of breast cancer cells. In addition, we determined that MEX3A could activate RhoA/ROCK1/LIMK1 signaling in the breast cancer cells. Overall, our study concluded that MEX3A promotes its migration and proliferation in breast cancer cells via modulating RhoA/ROCK1/LIMK1 signaling pathway.
Collapse
Affiliation(s)
- Li Yan
- Department Of Pathology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Hongjing Li
- Department Of Pathology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Wenbo An
- Department Of Radiology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Wei Wei
- Department Of Oncology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Xiaolei Zhang
- Department Of Oncology, Dongying People's Hospital, Dongying City, Shandong Province, China
| | - Linlin Wang
- Department Of Pathology, Dongying People's Hospital, Dongying City, Shandong Province, China
| |
Collapse
|
11
|
Wang Y, Liang Q, Lei K, Zhu Q, Zeng D, Liu Y, Lu Y, Kang T, Tang N, Huang L, Ye L, Tang D, Zhu C. Targeting MEX3A attenuates metastasis of breast cancer via β-catenin signaling pathway inhibition. Cancer Lett 2021; 521:50-63. [PMID: 34425185 DOI: 10.1016/j.canlet.2021.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/09/2022]
Abstract
Metastasis is the major cause of mortality in patients with breast cancer. Understanding the metastatic mechanism to guide clinical diagnoses and the treatment of breast cancer remains a challenge. We found that the expression of Mex-3 RNA binding family member A (MEX3A) was upregulated significantly and related to tumor grade in breast cancer. The results of in vitro and in vivo studies showed that knockdown of MEX3A inhibited the metastasis and impaired the stemness of breast cancer cells. Furthermore, activation of the β-catenin signaling pathway was discovered as a molecular intermediate of MEX3A-mediated regulation. We also found that ectopic expression of β-catenin restored the migration ability, invasion ability, and CD44+/CD24- percentage of MDA-MB-231 and BT549 cells when MEX3A was depleted. In addition, we revealed that MEX3A positively regulated the expression of β-catenin by downregulating Dickkopf WNT signaling pathway inhibitor 1 (DKK1) expression. Therefore, a previously undiscovered role of MEX3A comprising a critical contribution to promoting metastasis and maintaining the stemness of breast cancer via the Wnt/β-catenin pathway was demonstrated in the present study.
Collapse
Affiliation(s)
- Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qian Liang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Kefeng Lei
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Delong Zeng
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yuhong Liu
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Nannan Tang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lifen Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Shi X, Sun Y, Zhang Y, Wang W, Xu J, Guan Y, Ding Y, Yao Y. MEX3A promotes development and progression of breast cancer through regulation of PIK3CA. Exp Cell Res 2021; 404:112580. [PMID: 33811903 DOI: 10.1016/j.yexcr.2021.112580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer has been identified as the most common malignant tumors among women and the morbidity of breast cancer is still increasing rapidly. MEX3A possesses important functions in the regulation of mRNAs and may be involved in a variety of human diseases including cancer, whose relationship with breast cancer is still not clear. In this study, MEX3A was identified as a potential promotor in breast cancer, whose expression was strongly higher in breast cancer tissues than normal tissues. The in vitro experiments showed that MEX3A is capable of promoting the development of breast cancer through stimulating cell proliferation, inhibiting cell apoptosis, arresting cell cycle and promoting cell migration. The functions of MEX3A were also verified in vivo. Furthermore, a combination of genechip analysis and Ingenuity pathway analysis (IPA) identified PIK3CA as a potential downstream target of MEX3A, knockdown of which executes similar inhibitory effects on breast cancer and could alleviate MEX3A-induced progression of breast cancer. In conclusion, our study unveiled, as the first time, MEX3A as a tumor promotor for breast cancer, whose function was carried out probably through the regulation of PIK3CA.
Collapse
Affiliation(s)
- Xianbiao Shi
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yulu Sun
- School of Medicine, Southeast University, Nanjing, China
| | - Yin Zhang
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Wang
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiahan Xu
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yinan Guan
- School of Medicine, Southeast University, Nanjing, China
| | - Yitao Ding
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongzhong Yao
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Lederer M, Müller S, Glaß M, Bley N, Ihling C, Sinz A, Hüttelmaier S. Oncogenic Potential of the Dual-Function Protein MEX3A. BIOLOGY 2021; 10:415. [PMID: 34067172 PMCID: PMC8151450 DOI: 10.3390/biology10050415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
MEX3A belongs to the MEX3 (Muscle EXcess) protein family consisting of four members (MEX3A-D) in humans. Characteristic for MEX3 proteins is their domain structure with 2 HNRNPK homology (KH) domains mediating RNA binding and a C-terminal really interesting new gene (RING) domain that harbors E3 ligase function. In agreement with their domain composition, MEX3 proteins were reported to modulate both RNA fate and protein ubiquitination. MEX3 paralogs exhibit an oncofetal expression pattern, they are severely downregulated postnatally, and re-expression is observed in various malignancies. Enforced expression of MEX3 proteins in various cancers correlates with poor prognosis, emphasizing their oncogenic potential. The latter is supported by MEX3A's impact on proliferation, self-renewal as well as migration of tumor cells in vitro and tumor growth in xenograft studies.
Collapse
Affiliation(s)
- Marcell Lederer
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Simon Müller
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Markus Glaß
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Nadine Bley
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Christian Ihling
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Andrea Sinz
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Stefan Hüttelmaier
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| |
Collapse
|
14
|
Li H, Liang J, Wang J, Han J, Li S, Huang K, Liu C. Mex3a promotes oncogenesis through the RAP1/MAPK signaling pathway in colorectal cancer and is inhibited by hsa-miR-6887-3p. Cancer Commun (Lond) 2021; 41:472-491. [PMID: 33638620 PMCID: PMC8211350 DOI: 10.1002/cac2.12149] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Although Mex3 RNA‐binding family member A (Mex3a) has demonstrated an important role in multiple cancers, its role and regulatory mechanism in CRC is unclear. In this study, we aimed to investigate the role and clinical significance of Mex3a in CRC and to explore its underlying mechanism. Methods Western blotting and quantitative real‐time polymerase chain reaction (qRT‐PCR) were performed to detect the expression levels of genes. 5‐Ethynyl‐2'‐deoxyuridine (EDU) and transwell assays were utilized to examine CRC cell proliferation and metastatic ability. The R software was used to do hierarchical clustering analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Overexpression and rescue experiments which included U0126, a specific mitogen activated protein kinase kinase/extracellular regulated protein kinase (MEK/ERK) inhibitor, and PX‐478, a hypoxia‐inducible factor 1 subunit alpha (HIF‐1α) inhibitor, were used to study the molecular mechanisms of Mex3a in CRC cells. Co‐immunoprecipitation (Co‐IP) assay was performed to detect the interaction between two proteins. Bioinformatics analysis including available public database and Starbase software (starbase.sysu.edu.cn) were used to evaluate the expression and prognostic significance of genes. TargetScan (www.targetscan.org) and the miRDB (mirdb.org) website were used to predict the combination site between microRNA and target mRNA. BALB/c nude mice were used to study the function of Mex3a and hsa‐miR‐6887‐3p in vivo. Results Clinicopathological and immunohistochemical (IHC) studies of 101 CRC tissues and 79 normal tissues demonstrated that Mex3a was a significant prognostic factor for overall survival (OS) in CRC patients. Mex3a knockdown substantially inhibited the migration, invasion, and proliferation of CRC cells. Transcriptome analysis and mechanism verification showed that Mex3a regulated the RAP1 GTPase activating protein (RAP1GAP)/MEK/ERK/HIF‐1α pathway. Furthermore, RAP1GAP was identified to interact with Mex3a in Co‐IP experiments. Bioinformatics and dual‐luciferase reporter experiments revealed that hsa‐miR‐6887‐3p could bind to the 3'‐untranslated regions (3'‐UTR) of the Mex3a mRNA. hsa‐miR‐6887‐3p downregulated Mex3a expression and inhibited the tumorigenesis of CRC both in vitro and in vivo. Conclusions Our study demonstrated that the hsa‐miR‐6887‐3p/Mex3a/RAP1GAP signaling axis was a key regulator of CRC and Mex3a has the potential to be a new diagnostic marker and treatment target for CRC.
Collapse
Affiliation(s)
- Haixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jiang Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Shuang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Kai Huang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Provincial Key Lab of Mental Disorder, Shandong University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
15
|
Oshi M, Newman S, Murthy V, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. ITPKC as a Prognostic and Predictive Biomarker of Neoadjuvant Chemotherapy for Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:E2758. [PMID: 32992708 PMCID: PMC7601042 DOI: 10.3390/cancers12102758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with higher mortality than the others. Pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) is considered as a surrogate to predict survival. Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is a negative regulator of T cell activation, and reduction in ITPKC function is known to promote Kawasaki disease. Given the role of tumor infiltrating lymphocytes in NAC and since TNBC has the most abundant immune cell infiltration in breast cancer, we hypothesized that the ITPKC expression level is associated with NAC response and prognosis in TNBC. The ITPKC gene was expressed in the mammary gland, but its expression was highest in breast cancer cells among other stromal cells in a bulk tumor. ITPKC expression was highest in TNBC, associated with its survival, and was its independent prognostic factor. Although high ITPKC was not associated with immune function nor with any immune cell fraction, low ITPKC significantly enriched cell proliferation-related gene sets in TNBC. TNBC with low ITPKC achieved a significantly higher pCR rate after NAC. To the best of our knowledge, this is the first report to demonstrate that ITPKC gene expression may be useful as a prognostic and predictive biomarker in TNBC.
Collapse
Affiliation(s)
- Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Stephanie Newman
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
| | - Vijayashree Murthy
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (V.M.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York, NY 14263, USA
| |
Collapse
|