1
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
2
|
Naqvi SM, O’Sullivan LM, Allison H, Casey VJ, Schiavi-Tritz J, McNamara LM. Altered extracellular matrix and mechanotransduction gene expression in rat bone tissue following long-term estrogen deficiency. JBMR Plus 2024; 8:ziae098. [PMID: 39193115 PMCID: PMC11347883 DOI: 10.1093/jbmrpl/ziae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoporosis is primarily associated with bone loss, but changes in bone tissue matrix composition and osteocyte mechanotransduction have also been identified. However, the molecular mechanisms underlying these changes and their relation to bone loss are not fully understood. The objectives of this study were to (1) conduct comprehensive temporal gene expression analyses on cortical bone tissue from ovariectomized rats, with a specific focus on genes known to govern matrix degradation, matrix production, and mechanotransduction, and (2) correlate these findings with bone mass, trabecular and cortical microarchitecture, and mineral and matrix composition. Microarray data revealed 35 differentially expressed genes in the cortical bone tissue of the ovariectomized cohort. We report that catabolic gene expression abates after the initial accelerated bone loss period, which occurs within the first 4 wk of estrogen deficiency. However, in long-term estrogen deficiency, we report increased expression of genes associated with extracellular matrix deposition (Spp1, COL1A1, COL1A2, OCN) and mechanotransduction (Cx43) compared with age-matched controls and short-term estrogen deficiency. These changes coincided with increased heterogeneity of mineral-to-matrix ratio and collagen maturity, to which extracellular matrix markers COL1A1 and COL1A2 were positively correlated. Interestingly, mineral heterogeneity and collagen maturity, exhibited a negative correlation with PHEX and IFT88, associated with mechanosensory cilia formation and Hedgehog (Hh) signaling. This study provides the first insight into the underlying mechanisms governing secondary mineralization and heterogeneity of matrix composition of bone tissue in long-term estrogen deficiency. We propose that altered mechanobiological responses in long-term estrogen deficiency may play a role in these changes.
Collapse
Affiliation(s)
- Syeda Masooma Naqvi
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Laura M O’Sullivan
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Hollie Allison
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Vincent J Casey
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Jessica Schiavi-Tritz
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
- University of Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Laoise M McNamara
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| |
Collapse
|
3
|
Estrogen depletion alters osteogenic differentiation and matrix production by osteoblasts in vitro. Exp Cell Res 2021; 408:112814. [PMID: 34492267 DOI: 10.1016/j.yexcr.2021.112814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
Recent studies have revealed that the effects of estrogen deficiency are not restricted to osteoclasts and bone resorption, but that bone matrix composition is altered and osteoblasts exhibit an impaired response to mechanical stimulation. In this study, we test the hypothesis that estrogen depletion alters osteogenic differentiation and matrix production by mechanically stimulated osteoblasts in vitro. MC3T3-E1 cells were pre-treated with estrogen for 14 days, after which estrogen was withdrawn or inhibited with Fulvestrant up to 14 days. Fluid shear stress (FSS) was applied using an orbital shaker. Under estrogen depletion in static culture, osteogenic marker (ALP) and gene expression (Runx2) were decreased at 2 and after 7 days of estrogen depletion, respectively. In addition, up to 7 day the inhibition of the estrogen receptor significantly decreased fibronectin expression (FN1) under static conditions. Under estrogen depletion and daily mechanical stimulation, changes in expression of Runx2 occurred earlier (4 days) and by 14 days, changes in matrix production (Col1a1) were reported. We propose that changes in osteoblast differentiation and impaired matrix production during estrogen depletion may contribute to the altered quality of the bone and act as a contributing factor to increased bone fragility in postmenopausal osteoporosis.
Collapse
|
4
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
5
|
Designing Hydrogel-Based Bone-On-Chips for Personalized Medicine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent development of bone-on-chips (BOCs) holds the main advantage of requiring a low quantity of cells and material, compared to traditional In Vitro models. By incorporating hydrogels within BOCs, the culture system moved to a three dimensional culture environment for cells which is more representative of bone tissue matrix and function. The fundamental components of hydrogel-based BOCs, namely the cellular sources, the hydrogel and the culture chamber, have been tuned to mimic the hematopoietic niche in the bone aspirate marrow, cancer bone metastasis and osteo/chondrogenic differentiation. In this review, we examine the entire process of developing hydrogel-based BOCs to model In Vitro a patient specific situation. First, we provide bone biological understanding for BOCs design and then how hydrogel structural and mechanical properties can be tuned to meet those requirements. This is followed by a review on hydrogel-based BOCs, developed in the last 10 years, in terms of culture chamber design, hydrogel and cell source used. Finally, we provide guidelines for the definition of personalized pathological and physiological bone microenvironments. This review covers the information on bone, hydrogel and BOC that are required to develop personalized therapies for bone disease, by recreating clinically relevant scenarii in miniaturized devices.
Collapse
|
6
|
Nasello G, Vautrin A, Pitocchi J, Wesseling M, Kuiper JH, Pérez MÁ, García-Aznar JM. Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity. Bone 2021; 144:115769. [PMID: 33276152 DOI: 10.1016/j.bone.2020.115769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
It is well founded that the mechanical environment may regulate bone regeneration in orthopedic applications. The purpose of this study is to investigate the mechanical contributions of the scaffold and the host to bone regeneration, in terms of subject specificity, implantation site and sensitivity to the mechanical environment. Using a computational approach to model mechano-driven regeneration, bone ingrowth in porous titanium scaffolds was simulated in the distal femur and proximal tibia of three goats and compared to experimental results. The results showed that bone ingrowth shifted from a homogeneous distribution pattern, when scaffolds were in contact with trabecular bone (max local ingrowth 12.47%), to a localized bone ingrowth when scaffolds were implanted in a diaphyseal location (max local ingrowth 20.64%). The bone formation dynamics revealed an apposition rate of 0.37±0.28%/day in the first three weeks after implantation, followed by limited increase in bone ingrowth until the end of the experiment (12 weeks). According to in vivo data, we identified one animal whose sensitivity to mechanical stimulation was higher than the other two. Moreover, we found that the stimulus initiating bone formation was consistently higher in the femur than in the tibia for all the individuals. Overall, the dependence of the osteogenic response on the host biomechanics means that, from a mechanical perspective, the regenerative potential depends on both the scaffold and the host environment. Therefore, this work provides insights on how the mechanical conditions of both the recipient and the scaffold contribute to meet patient and location-specific characteristics.
Collapse
Affiliation(s)
- Gabriele Nasello
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Antoine Vautrin
- Ecole Nationale d'Ingénieurs de Metz, University of Lorraine, Metz, France
| | - Jonathan Pitocchi
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium; Materialise NV, Leuven, Belgium
| | | | - Jan Herman Kuiper
- Institute for Science and Technology in Medicine, Keele University, Keele, UK; The Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|