1
|
Willy NM, Ferguson JP, Akatay A, Huber S, Djakbarova U, Silahli S, Cakez C, Hasan F, Chang HC, Travesset A, Li S, Zandi R, Li D, Betzig E, Cocucci E, Kural C. De novo endocytic clathrin coats develop curvature at early stages of their formation. Dev Cell 2021; 56:3146-3159.e5. [PMID: 34774130 PMCID: PMC11414472 DOI: 10.1016/j.devcel.2021.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
Sculpting a flat patch of membrane into an endocytic vesicle requires curvature generation on the cell surface, which is the primary function of the endocytosis machinery. Using super-resolved live cell fluorescence imaging, we demonstrate that curvature generation by individual clathrin-coated pits can be detected in real time within cultured cells and tissues of developing organisms. Our analyses demonstrate that the footprint of clathrin coats increases monotonically during the formation of pits at different levels of plasma membrane tension. These findings are only compatible with models that predict curvature generation at the early stages of endocytic clathrin pit formation. We also found that CALM adaptors associated with clathrin plaques form clusters, whereas AP2 distribution is more homogenous. Considering the curvature sensing and driving roles of CALM, we propose that CALM clusters may increase the strain on clathrin lattices locally, eventually giving rise to rupture and subsequent pit completion at the edges of plaques.
Collapse
Affiliation(s)
- Nathan M Willy
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua P Ferguson
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Huber
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Salih Silahli
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Cemal Cakez
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Farah Hasan
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Ames Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Betzig
- Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Akisaka T. Platinum replicas of broken-open osteoclasts imaged by transmission electron microscopy. J Oral Biosci 2021; 63:307-318. [PMID: 34628004 DOI: 10.1016/j.job.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Preserving the cellular structure at the highest possible resolution is a prerequisite for morphological studies to deepen our understanding of cellular functions. A revival of interest in rapid-freezing methods combined with breaking-open techniques has taken place with the development of effective and informative approaches in platinum replica electron microscopy, thus providing new approaches to address unresolved issues in cell biology. HIGHLIGHT The images produced with platinum replicas revealed 3D structures of the cell interior: (1) cell membranes associated with highly organized cytoskeletons, including podosomes or geodomes, (2) heterogeneous clathrin assemblies and membrane skeletons on the inner side of the membrane, and (3) organization of the cytoskeleton after detergent extraction. CONCLUSION In this review, I will focus on the platinum replica method after brokenopen cells have been broken open with mechanical shearing or detergent extraction. Often forgotten nowadays is the use of platinum replicas with stereomicroscopic observations for transmission electron microscopy study; these "old-fashioned" imaging techniques, combined with the breaking-open technique represent a highly informative approach to deepen our understanding of the organization of the cell interior. These are still being pursued to answer outstanding biological questions.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
4
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|