1
|
Niu Y, Tang S, Li J, Huang C, Yang Y, Zhou L, Liu Y, Zeng X. Induction of ferroptosis of iridium(III) complexes localizing at the mitochondria and lysosome by photodynamic therapy. J Inorg Biochem 2024; 264:112808. [PMID: 39671743 DOI: 10.1016/j.jinorgbio.2024.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In this study, [Ir(ppy)2(DMHBT)](PF6) (ppy = deprotonated 1-phenylpyridine, DMHBT = 10,12-dimethylpteridino[6,7-f][1,10]phenanthroline-11,13-(10,12H)-dione, 8a), [Ir(bzq)2(DMHBT)](PF6) (bzq = deprotonated benzo[h]quinoline, 8b) and [Ir(piq)2(DMHBT)](PF6) (piq = deprotonated 1-phenylisoquinoline, 8c) were synthesized and characterized by HRMS, 13C NMR and 1H NMR. In vitro cytotoxicity experiments showed that 8a, 8b, 8c show moderate cytotoxicity against B16 cells, while the cytotoxicity of the complexes 8a, 8b and 8c toward B16 cells was greatly improved upon light irradiation, which can be used as photosensitizers to exert anticancer efficacy in photodynamic therapy (PDT). After being taken up by cells, 8a, 8b, 8c were localized in the mitochondria, resulting in a large amount of Ca2+ in-flux, a burst release of ROS, a sustained opening of mitochondrial permeability transition pore, and a decrease of the mitochondrial membrane potential, which led to mitochondrial dysfunction and further activation of caspase 3 and Bcl-2 family proteins to induce apoptosis. Overloaded ROS reacted with polyunsaturated fatty acids on the cell membrane, and initiated lipid peroxidation, inhibited the xc--system-glutathione (GSH)-glutathione peroxidase 4 (GPX4) antioxidant defense system, and upregulated the expression of the damage-associated molecules, HMGB1, CRT, and HSP70. The presence of Fer-1 was effective on increasing the cell survival, which demonstrates that the complexes possess the potential to induce ferroptosis and immunogenic cell death. In addition, 8a, 8b and 8c induced autophagy by inhibiting the AKT/PI3K/mTOR signaling pathway, downregulating p62 and promoting Beclin-1 expression upon light irradiation.
Collapse
Affiliation(s)
- Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shuanghui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiongbang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Liu J, Ding C, Liu X, Kang Q. Cytoskeletal Protein 4.1R in Health and Diseases. Biomolecules 2024; 14:214. [PMID: 38397451 PMCID: PMC10887211 DOI: 10.3390/biom14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Jiaojiao Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Cong Ding
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China
| | - Xin Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Guo W, Su L, Zhang H, Mi Z. Role of M2 macrophages-derived extracellular vesicles in IL-1β-stimulated chondrocyte proliferation and inflammatory responses. Cell Tissue Bank 2023; 24:93-107. [PMID: 35687263 DOI: 10.1007/s10561-022-10016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
M2 macrophages-derived extracellular vesicles (M2-EVs) serve as a tool for the delivery of miRNAs and play an anti-inflammatory role in diseases. This study sought to explore the role of (M2-EVs) in the proliferation and inflammatory responses of IL-1β-stimulated chondrocytes. M2 macrophages were induced and characterized, followed by isolation and characterization of M2-EVs. Chondrocytes were treated with 10 ng/mL IL-1β and co-cultured with M2 macrophages transfected with Cy3-labeled miR-370-3p. Cell viability, TNF (tumor necrosis factor)-α, IL(Interleukin)-18, IL-10, miR-370-3p, and sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) mRNA were determined via cell counting assay kit, colony formation, ELISA, and qRT-PCR. The binding relationship between miR-370-3p and SOX11 was testified via the dual-luciferase assay. The functional rescue experiment was designed to confirm the role of SOX11. M2-EVs improved chondrocyte viability and colony formation, lowered TNF-α and IL-18, and elevated IL-10. M2-EVs delivered miR-370-3p into chondrocytes to upregulate miR-370-3p. Upregulation of miR-370-3p in M2-EVs enhanced the protective role of M2-EVs in chondrocytes. miR-370-3p inhibited SOX11 transcription. SOX11 overexpression attenuated the protective role of M2-EVs in chondrocytes. Overall, our findings suggested that M2-EVs promote proliferation and suppress inflammatory responses in IL-1β-stimulated chondrocytes via the miR-370-3p/SOX11 axis.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China.
| | - Li Su
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Hao Zhang
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Zhanhu Mi
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
4
|
The Role of Cytoskeleton Protein 4.1 in Immunotherapy. Int J Mol Sci 2023; 24:ijms24043777. [PMID: 36835189 PMCID: PMC9961941 DOI: 10.3390/ijms24043777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cytoskeleton protein 4.1 is an essential class of skeletal membrane protein, initially found in red blood cells, and can be classified into four types: 4.1R (red blood cell type), 4.1N (neuronal type), 4.1G (general type), and 4.1B (brain type). As research progressed, it was discovered that cytoskeleton protein 4.1 plays a vital role in cancer as a tumor suppressor. Many studies have also demonstrated that cytoskeleton protein 4.1 acts as a diagnostic and prognostic biomarker for tumors. Moreover, with the rise of immunotherapy, the tumor microenvironment as a treatment target in cancer has attracted great interest. Increasing evidence has shown the immunoregulatory potential of cytoskeleton protein 4.1 in the tumor microenvironment and treatment. In this review, we discuss the role of cytoskeleton protein 4.1 within the tumor microenvironment in immunoregulation and cancer development, with the intention of providing a new approach and new ideas for future cancer diagnosis and treatment.
Collapse
|
5
|
The protein 4.1R downregulates VEGFA in M2 macrophages to inhibit colon cancer metastasis. Exp Cell Res 2021; 409:112896. [PMID: 34717920 DOI: 10.1016/j.yexcr.2021.112896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
M2 macrophages are crucial components of the tumour microenvironment and have been shown to be closely related to tumour progression. Co-culture with 4.1R-/- M2 macrophages enhances the malignancy of colon cancer (CC), but the mechanism remains unclear. Here, we report that protein 4.1R knockout reduced the phagocytosis of M2 macrophages (M-CSF/IL-4-treated bone marrow cells) and promoted MC38 colon cancer cell proliferation, migration, invasion, tumour formation and epithelial-mesenchymal transition (EMT), which are regulated by M2 macrophages. Further mechanistic dissection revealed that the 4.1R knockout upregulated vascular endothelial growth factor A (VEGFA) secreted by M2 macrophages and promoted colon cancer progression by activating the PI3K/AKT signalling pathway. In summary, our present study identified that 4.1R downregulates VEGFA secretion in M2 macrophages and delays the malignant potential of colon cancer by inhibiting the PI3K/AKT signalling pathway.
Collapse
|
6
|
Li ZK, Gao LF, Zhu XA, Xiang DK. LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochem Genet 2021; 59:1158-1172. [PMID: 33687636 DOI: 10.1007/s10528-021-10053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) seriously threatens the elder people. Long non-coding RNAs (lncRNAs) are involved in multiple diseases. However, the study of the lncRNAs in the occurrence of PAH is just beginning. For this, we sought to explore the biological function of lncRNA HOXA cluster antisense RNA 3 (HOXA-AS3) in PAH. Hypoxia (HYP) was used to mimic in vitro model of PAH. Gene and protein expressions in cells were detected by q-PCR and Western blotting, respectively. In addition, cell proliferation and viability were tested by CCK-8 and MTT assay. Cell apoptosis was measured by flow cytometry. Wound healing was used to detect cell migration. Furthermore, the connection of HOXA-AS3, miR-675-3p, and phosphodiesterase 5A (PDE5A) was verified by dual-luciferase report assay. HOXA-AS3 and PDE5A were upregulated in human pulmonary artery smooth muscle cells (HPASMCs) in the presence of HYP, while miR-675-3p was downregulated. Moreover, knockdown of HOXA-AS3 suppressed the growth and migration of HPASMCs, but induced the apoptosis. Overexpression of miR-675-3p achieved the same effect. MiR-675-3p inhibitor or overexpression of PDE5A notably reversed the inhibitory effect of HOXA-AS3 knockdown on PAH. Finally, HOXA-AS3 could sponge miR-675-3p, and PDE5A was directly targeted by miR-675-3p. HOXA-AS3 increased the development of PAH via regulation of miR-675-3p/PDE5 axis, which could be the potential biomarker for treatment of PAH.
Collapse
Affiliation(s)
- Zhong-Kui Li
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Lu-Fang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Xi-An Zhu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Dao-Kang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China.
| |
Collapse
|
7
|
You CX, Zhang K, Li X, Liu J, Zhang WJ, Yu XX. Cytotoxic Flavonoids from the Leaves and Twigs of Murraya Tetramera. Molecules 2021; 26:1284. [PMID: 33652969 PMCID: PMC7956623 DOI: 10.3390/molecules26051284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Cytotoxic flavonoids of Murraya tetramera were investigated in this study. A novel flavonoid and twelve known flavonoids, including seven flavones (1-7), three flavanones (8-10), and three chalcones (11-13) were isolated from the leaves and twigs of Murraya tetramera. Chemical structures were elucidated by NMR combined with MS spectral analysis, and the new compound (6) was confirmed as 3',5'-dihydroxy-5,6,7,4'-tetramethoxyflavone. Furthermore, all the isolated flavonoids were evaluated for their cytotoxicities against murine melanoma cells (B16), and human breast cancer cells (MDA-MB-231) by CCK-8 assay. Among them, compounds 7, 13, and 5 exhibited potent cytotoxic activities against B16 cell lines (IC50 = 3.87, 7.00 and 8.66 μg/mL, respectively). Compounds 5, 13, and 12 displayed potent cytotoxicities against MDA-MB-231 cell lines (IC50 = 3.80, 5.95 and 7.89 μg/mL, respectively). According to the correlation of the structure and activity analysis, 5-hydroxyl and 8-methoxyl substituents of the flavone, 8-methoxyl substituent of the flavanone, and 3',5'-methoxyl substituents of the chalcone could be critical factors of the high cytotoxicity. The results indicated that the active flavonoids have potential to be developed as leading compounds for treating cancers.
Collapse
Affiliation(s)
- Chun-Xue You
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China; (C.-X.Y.); (X.L.); (J.L.)
| | - Kun Zhang
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, China;
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China; (C.-X.Y.); (X.L.); (J.L.)
| | - Jing Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China; (C.-X.Y.); (X.L.); (J.L.)
| | - Wen-Juan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China; (C.-X.Y.); (X.L.); (J.L.)
| | - Xiao-Xue Yu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China; (C.-X.Y.); (X.L.); (J.L.)
| |
Collapse
|