1
|
He T, Pu J, Ge H, Liu T, Lv X, Zhang Y, Cao J, Yu H, Lu Z, Du F. Elevated circulating LncRNA NORAD fosters endothelial cell growth and averts ferroptosis by modulating the miR-106a/CCND1 axis in CAD patients. Sci Rep 2024; 14:24223. [PMID: 39414920 PMCID: PMC11484692 DOI: 10.1038/s41598-024-76243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases, characterized by endothelial dysfunction and lipid accumulation. Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell behavior. This study aimed to investigate the role of lncRNA NORAD in endothelial cell proliferation and as a potential therapeutic target for atherosclerosis. A total of 75 CAD patients and 76 controls were recruited, and plasma NORAD levels were measured using qRT-PCR. HUVECs were transfected with si-NORAD to evaluate its effects on cell cycle, proliferation, migration, and apoptosis. Plasma NORAD levels were significantly elevated in CAD patients. The NORAD-miRNA-mRNA ceRNA regulatory network was constructed based on GEO database, and G1/S-specific cyclin-D1 (CCND1) was identified as one of the hub factors. NORAD deficiency suppressed cell migration and induced G1 cell cycle arrest in HUVECs by downregulating CCND1 in vitro. NORAD upregulated CCND1 in HUVECs via sponging miR-106a that inhibited cell migration. The dual-luciferase assay confirmed the direct targeting of miR-106a by NORAD, and overexpression of miR-106a inhibited HUVEC proliferation and migration. Si-NORAD transfection resulted in induced early apoptosis, increased intracellular ROS levels, decreased GSH levels, and reduced mitochondrial membrane potential. Additionally, si-NORAD decreased the expression of GPX4, FTH1, KEAP1, NCOA4, and Nrf2, while increasing Xct levels, confirming the involvement of ferroptosis. Our findings reveal that NORAD plays a critical role in endothelial cell proliferation, migration, and apoptosis, and its silencing induces ferroptosis. The regulatory network involving NORAD, miR-106a, and their target genes provides a potential therapeutic avenue for atherosclerosis.
Collapse
Affiliation(s)
- Tao He
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Junxing Pu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Haijing Ge
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Tianli Liu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Xintong Lv
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Zhibing Lu
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China.
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China.
| |
Collapse
|
2
|
Zhang T, Huang H, Liang L, Lu H, Liang D. Long non-coding RNA (LncRNA) non-coding RNA activated by DNA damage (NORAD) knockdown alleviates airway remodeling in asthma via regulating miR-410-3p/RCC2 and inhibiting Wnt/β-catenin pathway. Heliyon 2024; 10:e23860. [PMID: 38261955 PMCID: PMC10796956 DOI: 10.1016/j.heliyon.2023.e23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Background Asthma is a chronic inflammatory disorder with high prevalence in childhood. Airway remodeling, an important structural change of the airways, is resulted from epithelial-mesenchymal transition. Long non-coding RNA non-coding RNA activated by DNA damage (NORAD) has been found to promote epithelial-mesenchymal transition in multiple cancers. This study aimed to analyze the role of NORAD in asthma, mainly focusing on epithelial-mesenchymal transition-mediated airway remodeling, and further explored the NORAD-miRNA-mRNA network. Methods NORAD expression was analyzed in transforming growth factor-β1-induced BEAS-2B human bronchial epithelial cells and ovalbumin-challenged asthmatic mice. The influences of NORAD on the epithelial-mesenchymal transition characteristics and Wnt/β-catenin pathway activation were analyzed in vitro. The interactions between NORAD and miR-410-3p as well as miR-410-3p and regulator of chromosome condensation 2 were detected by dual-luciferase reporter assay and RNA pull-down assay. Rescue experiments using miR-410-3p antagonist and chromosome condensation 2 overexpression were used to confirm the mechanism of NORAD. Additionally, the role and mechanism of NORAD were further evaluated in asthmatic mice. Results NORAD expression was elevated in both asthmatic models. Knockdown of NORAD impeded spindle-like morphology changes, elevated E-cadherin expression, decreased N-cadherin expression, suppressed cell migration, and inactivated the Wnt/β-catenin pathway in transforming growth factor-β1-stimulated BEAS-2B cells. NORAD acted as a sponge of miR-410-3p to regulate chromosome condensation 2 expression. Rescue assays demonstrated that silencing of NORAD ameliorated transforming growth factor-β1-induced EMT via miR-410-3p/chromosome condensation 2/Wnt/β-catenin axis. In vivo, knockdown of NORAD led to the reduction of inflammatory cell infiltration and collagen deposition, suppression of IL-4, IL-13, transforming growth factor-β1 and immunoglobulin E production, decreasing of N-cadherin, chromosome condensation 2, β-catenin and c-Myc expression, but increasing of E-cadherin and miR-410-3p expression. Conclusions Silencing of NORAD alleviated epithelial-mesenchymal transition-mediated airway remodeling in asthma via mediating miR-410-3p/chromosome condensation 2/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Han Huang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Lihong Liang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Hongxia Lu
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Dongge Liang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| |
Collapse
|
3
|
Zhou K, Li N, Qi J, Tu P, Yang Y, Duan H. Diagnostic and prognostic potential of long non-coding RNA NORAD in patients with acute deep vein thrombosis and its role in endothelial cell function. Thromb J 2024; 22:3. [PMID: 38167080 PMCID: PMC10763087 DOI: 10.1186/s12959-023-00575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) is the common clinical cardiovascular disease, and easily develops into post-thrombotic syndrome (PTS). The study aimed to examine the clinical value of long non-coding RNA NORAD gene in the development of DVT and PTS. In vitro, the underlying mechanism was explored. METHODS Serum levels of lncRNA NORAD gene in 85 DVT cases and 85 healthy individuals were tested. The role of lncRNA NORAD gene in human umbilical vein endothelial cells (HUVECs) proliferation, migration and inflammation was examined. The candidate downstream target gene was predicted via bioinformatic analysis. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were done for the function annotation and pathway enrichment. RESULTS LncRNA NORAD gene was at high expression in the serum of DVT patients, it can distinguish DVT patients from healthy controls with the area under the curve of 0.919. Elevated expression of lncRNA NORAD gene in PTS patients was detected, DVT cases with high expression of lncRNA NORAD gene were more susceptible to PTS. LncRNA NORAD gene knockdown promoted HUVECs' proliferation, migration while suppressing cell apoptosis and inflammation. MiR-93-5p served as a target of lncRNA NORAD gene, and its overexpression reversed the role of lncRNA NORAD gene in the biological function of HUVECs. The target genes of miR-93-5p were enriched in HIF-1 signaling, TGF-beta signaling and PI3K-Akt signaling, protein-protein interaction (PPI) network indicated STAT3, MAPK1 to be the key targets. CONCLUSIONS Upregulation of expression of lncRNA NORAD gene was a potential diagnostic biomarker for DVT and related to the development of PTS. LncRNA NORAD/miR-93-5p axis was involved in the progress of DVT through regulating endothelial cell function.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Breast Thyroid Vascular Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Na Li
- Department of Hematology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Jia Qi
- Department of Ophthalmology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Pingping Tu
- Department of Ophthalmology, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Yan Yang
- Department of Breast Thyroid Vascular Surgery, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, 442000, Shiyan, China
| | - Hui Duan
- Department of Emergency, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, No.32, Renmin South Road, 442000, Shiyan, Huibei Province, China.
| |
Collapse
|
4
|
Qian D, Wen J, Yuan Y, Wang L, Feng X. Sevoflurane preconditioning attenuates myocardial cell damage caused by hypoxia and reoxygenation via regulating the NORAD/miR-144-3p axis. Hum Exp Toxicol 2024; 43:9603271241297883. [PMID: 39586668 DOI: 10.1177/09603271241297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the function and mechanism of lncRNA NORAD in Sevoflurane (Sev) protection against myocardial hypoxia-reoxygenation (H/R). METHODS Preprocess rat cardiomyocytes H9c2 cells with Sev at concentrations of 0.5%, 1.0%, and 1.5%, and subjected them to H/R treatment. qRT-PCR was used to detect levels of NORAD and miR-144-3p. Measure concentrations of the inflammatory cytokines IL-6, TNF-α, and IL-10, as well as cardiac injury markers cTnI, CK-MB, and LDH using ELISA. Assess cell proliferation and apoptosis using CCK-8 and flow cytometry. Perform dual-luciferase reporter assay and RIP assay to validate the targeting relationship between NORAD and miR-144-3p. RESULTS H/R induced inhibition of cell proliferation, increase in apoptosis, and production of IL-6, TNF-α, CK-MB, LDH, and cTnI were significantly attenuated by Sev. As hypoxic treatment time lengthened, the NORAD levels in myocardial cells showed an increase, with Sev pretreatment being able to suppress the NORAD levels elevation. The overexpression of NORAD notably weakened the cardioprotective effect of Sev. NORAD targetedly binds to miR-144-3p and negatively regulates miR-144-3p. Increased miR-144-3p levels inhibited the antagonistic effect of NORAD on the cardioprotective effects of Sev. CONCLUSION The current study confirmed that sevoflurane attenuated H/R-induced cardiomyocyte injury via the NORAD/miR-144-3p axis.
Collapse
Affiliation(s)
- Duo Qian
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Wen
- Cardiology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yawei Yuan
- Department of Anesthesiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaona Feng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
5
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Barros Ferreira L, Ashander LM, Appukuttan B, Ma Y, Williams KA, Smith JR. Expression of Long Non-Coding RNAs in Activated Human Retinal Vascular Endothelial Cells. Ocul Immunol Inflamm 2023; 31:1813-1818. [PMID: 36194865 DOI: 10.1080/09273948.2022.2122512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/03/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE Retinal endothelial cell activation is a central event in non-infectious posterior uveitis. There is recent interest in long non-coding (lnc)RNA-targeted therapeutics for retinal diseases. We aimed to identify human retinal endothelial cell lncRNAs that might be involved in activation. METHODS Eleven candidate lncRNAs were identified: GAS5, KCNQ1OT1, LINC00294, MALAT1, MEG3, MIR155HG, NEAT1, NORAD, OIP5-AS1, SENCR, TUG1. Expression was assessed by RT-PCR in human retinal endothelial cells, at baseline and following activation with interleukin (IL)-1β and tumor necrosis factor (TNF)-α. RESULTS IL-1β significantly upregulated MEG3 and SENCR at 4 and 24 hours; LINC00294, NORAD, OIP5-AS1 and TUG1 at 24 hours; and MIR155HG at 4, 24 and 48 hours; but downregulated GAS5 at 24 and 48 hours. TNF-α significantly upregulated KCNQ1OT1, LINC00294, MEG3, NORAD and SENCR at 4 hours; SENCR and TUG1 at 24 hours; and MIR155HG at all time points. CONCLUSIONS Future studies involving manipulation of MIR155HG may be warranted to explore potential therapeutic applications for non-infectious posterior uveitis.
Collapse
Affiliation(s)
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Binoy Appukuttan
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Keryn A Williams
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 2023; 374:99-106. [PMID: 37059656 DOI: 10.1016/j.atherosclerosis.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis and numerous other cardiovascular diseases develop in an age-dependent manner. The endothelial cells that line the vessel walls play an important role in the development of atherosclerosis. Non-coding RNA like microRNAs and long non-coding RNAs are known to play an important role in endothelial function and are implicated in the disease progression. Here, we summarize several microRNAs and long non-coding RNAs that are known to have an altered expression with endothelial aging and discuss their role in endothelial cell function and senescence. These processes contribute to aging-induced atherosclerosis development and by targeting the non-coding RNAs controlling endothelial cell function and senescence, atherosclerosis can potentially be attenuated.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany; German Centre for Cardiovascular Research DZHK, Partner site Frankfurt Rhein/Main, Frankfurt Am Main, Germany.
| |
Collapse
|
8
|
Zhang X, Kan X, Shen J, Li J. Increased long non-coding RNA NORAD reflects serious cardiovascular stenosis, aggravated inflammation status, and higher lipid level in coronary heart disease. J Clin Lab Anal 2022; 36:e24717. [PMID: 36319574 PMCID: PMC9701832 DOI: 10.1002/jcla.24717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/03/2025] Open
Abstract
OBJECTIVE Long non-coding RNA activated by DNA damage (lnc-NORAD) modulates inflammation, lipid level, and atherosclerosis in various cardiovascular diseases. This study intended to investigate the dysregulated expression of lnc-NORAD, and its linkage with clinical characteristics, inflammatory cytokines, and accumulating major adverse cardiovascular events (MACE) in coronary heart disease (CHD) patients. METHODS Totally, 160 CHD patients, 30 disease controls (DCs), and 30 healthy controls (HCs) were included. The reverse transcription-quantitative polymerase chain reaction was used to detect lnc-NORAD expression in peripheral blood mononuclear cell samples from all participants. Enzyme-linked immunosorbent assay was applied to detect proinflammatory cytokines and adhesion molecules in CHD patients. Then, MACE was recorded during a median follow-up of 12 (range: 1.0-27.0) months. RESULTS Lnc-NORAD was highest in CHD patients, followed by DCs, and lowest in HCs (p < 0.001). In CHD patients, lnc-NORAD was positively linked with Gensini score (p = 0.001). Meanwhile, lnc-NORAD was positively linked to C-reactive protein (p = 0.023), tumor necrosis factor-alpha (p = 0.016), interleukin (IL)-6 (p = 0.003), IL-8 (P = 0.018), and IL-17A (p = 0.029). No relation of lnc-NORAD with vascular cell adhesion molecule-1 (p = 0.094) and intercellular adhesion molecule-1 (p = 0.060) was found. Furthermore, lnc-NORAD was positively related to total cholesterol (p = 0.014) and low-density lipoprotein cholesterol (p = 0.004), whereas lnc-NORAD was not linked to triglyceride (p = 0.103) and high-density lipoprotein cholesterol (p = 0.533). However, lnc-NORAD (high vs. low), and its higher quartiles were both not linked to accumulating MACE rate (p > 0.05). CONCLUSION Increased lnc-NORAD is linked with aggravated stenosis degree, inflammation status, and blood lipid in CHD patients. However, further validation is required.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- General PracticeTianjin Fifth Central HospitalTianjinChina
| | - Xuetong Kan
- Clinical LaboratoryTianjin Fifth Central HospitalTianjinChina
| | - Jingjing Shen
- Department of Cardiovascular MedicineTianjin Fifth Central HospitalTianjinChina
| | - Jian Li
- Department of Rheumatology and ImmunologyTianjin Fifth Central HospitalTianjinChina
| |
Collapse
|
9
|
Lei N, Kong P, Chen S, Wang Q, Tang X, Liu F. Upregulated NORAD is implicated in apoptosis, inflammation, and oxidative stress in ulcerative colitis through the nuclear factor-κappaB signaling. Eur J Gastroenterol Hepatol 2022; 34:630-639. [PMID: 35412486 DOI: 10.1097/meg.0000000000002370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease that affects the colon. It has been discovered that long non-coding RNA activated by DNA damage (NORAD) is upregulated in UC patient-derived serums, but its functional mechanism in UC has not been disclosed. METHODS Relative levels of NORAD in colonic mucosal tissues and TNF-α-stimulated human normal colonic mucosal cells (FHCs) were detected. Functional experiments were executed to evaluate the effects of NORAD silencing on TNF-α-induced FHC proliferation, apoptosis, inflammation, and oxidative stress. The molecular mechanism related to NORAD was predicted by starBase and confirmed by dual-luciferase reporter and RIP assays. RESULTS Our data exhibited higher levels of NORAD in UC patient-derived colonic mucosal tissues and TNF-α-stimulated FHCs. Functional experiments presented that NORAD inhibition impaired TNF-α-induced FHC apoptosis, inflammation, and oxidative stress. NORAD acted as a miR-552-3p sponge, and miR-552-3p silencing weakened NORAD inhibition-mediated effects on TNF-α-induced FHC apoptosis, inflammation, and oxidative stress. Myeloid differentiation primary response gene 88 (MYD88) was verified as a miR-552-3p target, and MYD88 overexpression whittled miR-552-3p mimic-mediated inhibition on TNF-α-induced FHC apoptosis, inflammation, and oxidative stress. Notably, TNF-α-induced NORAD regulated the nuclear factor-κappaB (NF-κB) signaling via the miR-552-3p/MYD88 axis. CONCLUSION NORAD participates in TNF-α-induced FHC apoptosis, inflammation, and oxidative stress via the NF-κB signaling via the miR-552-3p/MYD88 axis, offering new insights into the pathogenesis of UC.
Collapse
Affiliation(s)
- Na Lei
- Department of Basic Theory of Chinese Medicine, School of Basic Medical Sciences, Chengdu University of TCM, Chengdu
| | - Pengfei Kong
- Anorectal Department of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College
| | - Simin Chen
- Institute of Anorectal Diseases, North Sichuan Medical College
| | - Qiuxiao Wang
- Department of Clinical Medicine of Combination of Chinese and Western Medicine, North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Xuegui Tang
- Anorectal Department of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College
| | - Fang Liu
- Anorectal Department of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of North Sichuan Medical College
| |
Collapse
|
10
|
Sun W, He X, Zhang X, Wang X, Lin W, Wang X, Liang Y. Diagnostic value of Long non-coding Ribonucleic Acid non-coding activated by Deoxyribonucleic Acid damage in pulmonary tuberculosis and its regulatory role in Mycobacterium tuberculosis infection of macrophages. Microbiol Immunol 2022; 66:433-441. [PMID: 35568971 DOI: 10.1111/1348-0421.12986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Pulmonary tuberculosis (PTB) infection is a chronic inflammatory response caused by Mycobacterium tuberculosis (Mtb). The purpose of this study was to confirm the value of Long non-coding RNA (LncRNA) non-coding activated by DNA damage (NORAD) in the diagnosis of PTB and to explore its mechanism in Mtb-infected macrophages. NORAD serum levels were estimated by qRT-PCR in 90 PTB patients and 85 healthy individuals. ROC curves were employed to assess the diagnostic value of NORAD for PTB. Human and murine macrophages were infected with Mtb strain H37Rv. CCK-8 and ELISA detected macrophages viability and inflammatory cytokine secretion. A dual-luciferase reporter assay was performed to analyze the targeting relationship between NORAD and microRNA (miR)-618. NORAD was significantly elevated in patients with PTB, and its positivity was correlated with inflammatory cytokines IL-1 β (r = 0.854), TNF-α (r = 0.617), IL-6 (r = 0.585). With an AUC of 0.918, and sensitivity and specificity of 80.0% and 89.4%, respectively, NORAD remarkedly identified PTB patients from healthy individuals. Furthermore, Mtb infection significantly increased NORAD levels in THP-1 and RAW264.7 and increased their viability and inflammation (P <0.001). However, this increased effect was weakened by reduced NORAD. Dual-luciferase reporter assay confirmed that miR-618 in macrophages was a target miRNA for NORAD and can be negatively regulated by it. Moreover, elevated miR-618 suppressed macrophage viability and inflammation in Mtb infection. NORAD is a potential diagnostic biomarker for PTB and is involved in Mtb infected macrophage activity and inflammation by targeting miR-618. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenna Sun
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xiong He
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xiushuang Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xiaomeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wen Lin
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xiaofeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Meng J, Xu C. MicroRNA‐495‐3p diminishes doxorubicin‐induced cardiotoxicity through activating AKT. J Cell Mol Med 2022; 26:2076-2088. [PMID: 35152537 PMCID: PMC8980898 DOI: 10.1111/jcmm.17230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Doxorubicin (Dox) is a broad‐spectrum antitumour agent; however, its clinical application is impeded due to the cumulative cardiotoxicity. The present study aims to investigate the role and underlying mechanisms of microRNA‐495‐3p (miR‐495‐3p) in Dox‐induced cardiotoxicity. Herein, we found that cardiac miR‐495‐3p expression was significantly decreased in Dox‐treated hearts, and that the miR‐495‐3p agomir could prevent oxidative stress, cell apoptosis, cardiac mass loss, fibrosis and cardiac dysfunction upon Dox stimulation. In contrast, the miR‐495‐3p antagomir dramatically aggravated Dox‐induced cardiotoxicity in mice. Besides, we found that the miR‐495‐3p agomir attenuated, while the miR‐495‐3p antagomir exacerbated Dox‐induced oxidative stress and cellular injury in vitro. Mechanistically, we demonstrated that miR‐495‐3p directly bound to the 3′‐untranslational region of phosphate and tension homology deleted on chromosome ten (PTEN), downregulated PTEN expression and subsequently activated protein kinase B (PKB/AKT) pathway, and that PTEN overexpression or AKT inhibition completely abolished the cardioprotective effects of the miR‐495‐3p agomir. Our study for the first time identify miR‐495‐3p as an endogenous protectant against Dox‐induced cardiotoxicity through activating AKT pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Meng
- The First Affiliated Hospital Functional Department Hengyang Medical School University of South China Hengyang Hunan China
| | - Can Xu
- The First Affiliated Hospital Department of Cardiology Hengyang Medical School University of South China Hengyang Hunan China
| |
Collapse
|
12
|
Li Y, Lv Y, Wang J, Zhu X, Chen J, Zhang W, Wang C, Jiang L. LncRNA NORAD Mediates the Proliferation and Apoptosis of Diffuse Large-B-Cell Lymphoma via Regulation of miR-345-3p/TRAF6 Axis. Arch Med Res 2022; 53:271-279. [DOI: 10.1016/j.arcmed.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/19/2021] [Accepted: 01/25/2022] [Indexed: 12/27/2022]
|
13
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is critical for all aspects of vascular pathobiology. In vascular disease the balance of its structural components is shifted. In atherosclerotic plaques there is in fact a dynamic battle between stabilizing and proinflammatory responses. This review explores the most recent strides that have been made to detail the active role of the ECM - and its main binding partners - in driving atherosclerotic plaque development and destabilization. RECENT FINDINGS Proteoglycans-glycosaminoglycans (PGs-GAGs) synthesis and remodelling, as well as elastin synthesis, cross-linking, degradation and its elastokines potentially affect disease progression, providing multiple steps for potential therapeutic intervention and diagnostic targeted imaging. Of note, GAGs biosynthetic enzymes modulate the phenotype of vascular resident and infiltrating cells. In addition, while plaque collagen structure exerts very palpable effects on its immediate surroundings, a new role for collagen is also emerging on a more systemic level as a biomarker for cardiovascular disease as well as a target for selective drug-delivery. SUMMARY The importance of studying the ECM in atherosclerosis is more and more acknowledged and various systems are being developed to visualize, target and mimic it.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Sweden
| |
Collapse
|