1
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Muraki N, Kawabe N, Ohashi A, Umeda K, Katsuda M, Tomatsu A, Yoshida M, Komeda K, Minna JD, Tanaka I, Morise M, Matsushima M, Matsui Y, Kawabe T, Sato M. BRAF V600E promotes anchorage-independent growth but inhibits anchorage-dependent growth in hTERT/Cdk4-Immortalized normal human bronchial epithelial cells. Exp Cell Res 2024; 439:114057. [PMID: 38679315 DOI: 10.1016/j.yexcr.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Certain oncogenes, including mutant RAS and BRAF, induce a type of senescence known as oncogene-induced senescence (OIS) in normal cells in a cell-type-specific manner. OIS serves as a barrier to transformation by activated oncogenes. Our previous studies showed that mutant KRASV12 did not efficiently induce OIS in an hTERT/Cdk4-immortalized normal human bronchial epithelial cell line (HBEC3), but it did enhance both anchorage-dependent and anchorage-independent growth. In this study, we investigated whether mutant BRAF, a well-known inducer of OIS, could trigger OIS in HBEC3 cells. We also assessed the impact of mutant BRAF on the growth of HBEC3 cells, as no previous studies have examined this using a normal bronchial epithelial cell line model. We established an HBEC3 cell line, designated as HBEC3-BIN, that expresses mutant BRAFV600E in a doxycycline-regulated manner. Unlike our previous finding that KRASV12 upregulated both pERK and pAKT, mutant BRAFV600E upregulated pERK but not pAKT in HBEC3-BIN cells. Similar to KRASV12, BRAFV600E did not efficiently induce OIS. Interestingly, while BRAFV600E inhibited colony formation in anchorage-dependent conditions, it dramatically enhanced colony formation in anchorage-independent conditions in HBEC3-BIN. In HBEC3 cells without BRAFV600E or KRASV12 expression, p21 was only detected in the cytoplasm, and its localization was not altered by the expression of BRAFV600E or KRASV12. Next-generation sequencing analysis revealed an enrichment of gene sets known to be involved in carcinogenesis, including IL3/JAK/STAT3, IL2, STAT5, and the EMT pathway. Our results indicate that, unlike KRASV12, which promoted both, BRAFV600E enhances anchorage-independent growth but inhibits anchorage-dependent growth of HBEC3. This contrast may result from differences in activation signaling in the downstream pathways. Furthermore, HBEC3 cells appear to be inherently resistant to OIS, which may be partly due to the fact that p21 remains localized in the cytoplasm upon expression of BRAFV600E or KRASV12.
Collapse
Affiliation(s)
- Nao Muraki
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Nozomi Kawabe
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Ayano Ohashi
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Kanna Umeda
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Masahito Katsuda
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Aya Tomatsu
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Mikina Yoshida
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Kazuki Komeda
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, 466-8550, Japan
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75230-8593, USA
| | - Ichidai Tanaka
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, 466-8550, Japan
| | - Masahiro Morise
- Dept. of Respiratory Medicine, Nagoya University Graduate School of Medicine, 466-8550, Japan
| | - Miyoko Matsushima
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Yusuke Matsui
- . Biomedical and Health Informatics Unit, Graduate School of Medicine, Nagoya University, Nagoya, 461-8673, Japan
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 461-8673, Japan.
| |
Collapse
|
3
|
Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024; 10:e24593. [PMID: 38318070 PMCID: PMC10838744 DOI: 10.1016/j.heliyon.2024.e24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
3D bioprinting has unlocked new possibilities for generating complex and functional tissues and organs. However, one of the greatest challenges lies in selecting the appropriate seed cells for constructing fully functional 3D artificial organs. Currently, there are no cell sources available that can fulfill all requirements of 3D bioprinting technologies, and each cell source possesses unique characteristics suitable for specific applications. In this review, we explore the impact of different 3D bioprinting technologies and bioink materials on seed cells, providing a comprehensive overview of the current landscape of cell sources that have been used or hold potential in 3D bioprinting. We also summarized key points to guide the selection of seed cells for 3D bioprinting. Moreover, we offer insights into the prospects of seed cell sources in 3D bioprinted organs, highlighting their potential to revolutionize the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|