1
|
Li X, Li Q, Jiang X, Song S, Zou W, Yang Q, Liu S, Chen S, Wang C. Inhibition of SGLT2 protects podocytes in diabetic kidney disease by rebalancing mitochondria-associated endoplasmic reticulum membranes. Cell Commun Signal 2024; 22:534. [PMID: 39511548 PMCID: PMC11542362 DOI: 10.1186/s12964-024-01914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors have changed the therapeutic landscape for diabetic kidney disease (DKD) patients, but their underlying mechanisms are complicated and not fully understood. Mitochondria-associated endoplasmic reticulum membranes (MAMs), the dynamic contact sites between mitochondria and the endoplasmic reticulum (ER), serve as intracellular platforms important for regulating cellular fate and function. This study explored the roles and mechanisms of SGLT2 inhibitors in regulating MAMs formation in diabetic podocytes. METHODS We assessed MAMs formation in podocytes from DKD patients' renal biopsy samples and induced an increase in MAMs formation in cultured human podocytes by transfecting OMM-ER linker plasmid to investigate the effects of MAMs imbalance on podocyte injury. Empagliflozin-treated diabetic mice and podocyte-specific SGLT2 knockout diabetic mice (diabetic states were induced by streptozotocin and a high-fat diet), empagliflozin-treated podocytes, SGLT2-downregulated podocytes, and SGLT2-overexpressing podocytes were used to investigate the effects and mechanisms of SGLT2 inhibitors on MAMs formation in diabetic podocytes. RESULTS MAMs were increased in podocytes and were associated with renal dysfunction in DKD patients. Increased MAMs aggravated HG-induced podocyte injury. The expression of SGLT2 was increased in diabetic podocytes. In addition, empagliflozin-treatment and podocyte-specific SGLT2 knockout attenuated MAMs formation and podocyte injury in diabetic mice. Empagliflozin treatment and SGLT2 knockdown decreased podocyte MAMs formation by activating the AMP-activated protein kinase (AMPK) pathway, while SGLT2 overexpression had the opposite effect. CONCLUSIONS Inhibition of SGLT2 attenuates MAMs imbalance in diabetic podocytes by activating the AMPK pathway. This study expands our knowledge of the roles of SGLT2 inhibitors in improving DKD podocyte injury and provides new insights into DKD treatment.
Collapse
Affiliation(s)
- Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Xinying Jiang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shuangqin Chen
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
2
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
3
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
4
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Song S, Hu T, Shi X, Jin Y, Liu S, Li X, Zou W, Wang C. ER Stress-Perturbed Intracellular Protein O-GlcNAcylation Aggravates Podocyte Injury in Diabetes Nephropathy. Int J Mol Sci 2023; 24:17603. [PMID: 38139429 PMCID: PMC10743520 DOI: 10.3390/ijms242417603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide, and podocyte injury is the central contributor to the progression of DN. Despite the emerging evidence that has established the importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of DN, abnormal protein O-GlcNAcylation is also augmented. Currently, the mechanism associating these two hyperglycemia-induced disorders remains poorly understood. This study intended to elucidate whether ER stress drives hyper-protein O-GlcNAcylation to cause podocyte injury in DN. We used both type 1 and type 2 DN models to confirm the occurrence of ER stress and excessive protein O-GlcNAcylation, and then podocyte purification was also conducted for further investigation. Nephroseq V5 data were mined and in vitro studies were applied to reveal the involvement of ER stress and hyper-O-GlcNAcylation in podocyte injury. Our results indicated that ER stress was induced in both type 1 and type 2 DN, and the human RNA-seq data from Nephroseq V5 showed that O-GlcNAcylation-related genes were significantly upregulated in the DN patients. We further demonstrated that ER stress occurred prior to hyper-O-GlcNAc modification and that pharmacologically inhibited protein O-GlcNAcylation can help decrease the podocyte apoptosis induced by hyperglycemia. Together, these discoveries will aid in uncovering the activation of the ER stress-O-GlcNAcylation axis in podocyte injury under DN, which will help open up new therapeutic approaches for preventing DN progression.
Collapse
Affiliation(s)
- Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Tiantian Hu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Xu Shi
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Yongjie Jin
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China; (S.S.); (X.S.); (Y.J.)
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China
| |
Collapse
|
7
|
Hejazian SM, Ardalan M, Hosseiniyan Khatibi SM, Rahbar Saadat Y, Barzegari A, Gueguen V, Meddahi-Pellé A, Anagnostou F, Zununi Vahed S, Pavon-Djavid G. Biofactors regulating mitochondrial function and dynamics in podocytes and podocytopathies. J Cell Physiol 2023; 238:2206-2227. [PMID: 37659096 DOI: 10.1002/jcp.31110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Podocytes are terminally differentiated kidney cells acting as the main gatekeepers of the glomerular filtration barrier; hence, inhibiting proteinuria. Podocytopathies are classified as kidney diseases caused by podocyte damage. Different genetic and environmental risk factors can cause podocyte damage and death. Recent evidence shows that mitochondrial dysfunction also contributes to podocyte damage. Understanding alterations in mitochondrial metabolism and function in podocytopathies and whether altered mitochondrial homeostasis/dynamics is a cause or effect of podocyte damage are issues that need in-depth studies. This review highlights the roles of mitochondria and their bioenergetics in podocytes. Then, factors/signalings that regulate mitochondria in podocytes are discussed. After that, the role of mitochondrial dysfunction is reviewed in podocyte injury and the development of different podocytopathies. Finally, the mitochondrial therapeutic targets are considered.
Collapse
Affiliation(s)
| | | | | | | | - Abolfazl Barzegari
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Virginie Gueguen
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Anne Meddahi-Pellé
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| | - Fani Anagnostou
- Université de Paris, CNRS UMR 7052 INSERM U1271, B3OA, Paris, France
| | | | - Graciela Pavon-Djavid
- Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Villetaneuse, France
| |
Collapse
|