1
|
Kim HJ, Lee DS, Park JH, Hong HE, Choi HJ, Kim OH, Kim SJ. Exosome-based strategy against colon cancer using small interfering RNA-loaded vesicles targeting soluble a proliferation-inducing ligand. World J Stem Cells 2024; 16:956-973. [DOI: 10.4252/wjsc.v16.i11.956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Recent advancements in nanomedicine have highlighted the potential of exosome (Ex)-based therapies, utilizing naturally derived nanoparticles, as a novel approach to targeted cancer treatment.
AIM To explore the targetability and anticancer effectiveness of small interfering peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 RNA (siPIN1)-loaded soluble a proliferation-inducing ligand (sAPRIL)-targeted Exs (designated as tEx[p]) in the treatment of colon cancer models.
METHODS tEx was generated by harvesting conditioned media from adipose-derived stem cells that had undergone transformation using pDisplay vectors encoding sAPRIL-binding peptide sequences. Subsequently, tEx[p] were created by incorporating PIN1 siRNA into the tEx using the Exofect kit. The therapeutic efficacy of these Exs was evaluated using both in vitro and in vivo models of colon cancer.
RESULTS The tEx[p] group exhibited superior anticancer effects in comparison to other groups, including tEx, Ex[p], and Ex, demonstrated by the smallest tumor size, the slowest tumor growth rate, and the lightest weight of the excised tumors observed in the tEx[p] group (P < 0.05). Moreover, analyses of the excised tumor tissues, using western blot analysis and immunohistochemical staining, revealed that tEx[p] treatment resulted in the highest increase in E-cadherin expression and the most significant reduction in the mesenchymal markers Vimentin and Snail (P < 0.05), suggesting a more effective inhibition of epithelial-mesenchymal transition tEx[p], likely due to the enhanced delivery of siPIN1.
CONCLUSION The use of bioengineered Exs targeting sAPRIL and containing siPIN1 demonstrated superior efficacy in inhibiting tumor growth and epithelial-mesenchymal transition, highlighting their potential as a therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Hyung-Jin Kim
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, South Korea
| | - Do Sang Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Jung Hyun Park
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, South Korea
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ha-Eun Hong
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Translational Research Team, Surginex Co., Ltd., Seoul 06591, South Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Translational Research Team, Surginex Co., Ltd., Seoul 06591, South Korea
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| |
Collapse
|
2
|
Nakatsu Y, Matsunaga Y, Nakanishi M, Yamamotoya T, Sano T, Kanematsu T, Asano T. Prolyl isomerase Pin1 in skeletal muscles contributes to systemic energy metabolism and exercise capacity through regulating SERCA activity. Biochem Biophys Res Commun 2024; 715:150001. [PMID: 38676996 DOI: 10.1016/j.bbrc.2024.150001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The skeletal muscle is a pivotal organ involved in the regulation of both energy metabolism and exercise capacity. There is no doubt that exercise contributes to a healthy life through the consumption of excessive energy or the release of myokines. Skeletal muscles exhibit insulin sensitivity and can rapidly uptake blood glucose. In addition, they can undergo non-shivering thermogenesis through actions of both the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) and small peptide, sarcolipin, resulting in systemic energy metabolism. Accordingly, the maintenance of skeletal muscles is important for both metabolism and exercise. Prolyl isomerase Pin1 is an enzyme that converts the cis-trans form of proline residues and controls substrate function. We have previously reported that Pin1 plays important roles in insulin release, thermogenesis, and lipolysis. However, the roles of Pin1 in skeletal muscles remains unknown. To clarify this issue, we generated skeletal muscle-specific Pin1 knockout mice. Pin1 deficiency had no effects on muscle weights, morphology and ratio of fiber types. However, they showed exacerbated obesity or insulin resistance when fed with a high-fat diet. They also showed a lower ability to exercise than wild type mice did. We also found that Pin1 interacted with SERCA and elevated its activity, resulting in the upregulation of oxygen consumption. Overall, our study reveals that Pin1 in skeletal muscles contributes to both systemic energy metabolism and exercise capacity.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
| | - Yasuka Matsunaga
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mikako Nakanishi
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; Division of Diabetes and Metabolic Diseases, Department of Internal Medicine, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, 173-8610, Tokyo, Japan
| | - Tomomi Sano
- Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Kanematsu
- Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
3
|
Wu S, Zou Y, Tan X, Yang S, Chen T, Zhang J, Xu X, Wang F, Li W. The molecular mechanisms of peptidyl-prolyl cis/trans isomerase Pin1 and its relevance to kidney disease. Front Pharmacol 2024; 15:1373446. [PMID: 38711994 PMCID: PMC11070514 DOI: 10.3389/fphar.2024.1373446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Pin1 is a member of the peptidyl-prolyl cis/trans isomerase subfamily and is widely expressed in various cell types and tissues. Alterations in Pin1 expression levels play pivotal roles in both physiological processes and multiple pathological conditions, especially in the onset and progression of kidney diseases. Herein, we present an overview of the role of Pin1 in the regulation of fibrosis, oxidative stress, and autophagy. It plays a significant role in various kidney diseases including Renal I/R injury, chronic kidney disease with secondary hyperparathyroidism, diabetic nephropathy, renal fibrosis, and renal cell carcinoma. The representative therapeutic agent Juglone has emerged as a potential treatment for inhibiting Pin1 activity and mitigating kidney disease. Understanding the role of Pin1 in kidney diseases is expected to provide new insights into innovative therapeutic interventions and strategies. Consequently, this review delves into the molecular mechanisms of Pin1 and its relevance in kidney disease, paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Shukun Wu
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurong Zou
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Sun C, Zhou C, Daneshvar K, Ben Saad A, Kratkiewicz AJ, Toles BJ, Arghiani N, Hess A, Chen JY, Pondick JV, York SR, Li W, Moran SP, Gentile SD, Rahman RU, Li Z, Zhou P, Sparks RP, Habboub T, Kim BM, Choi MY, Affo S, Schwabe RF, Popov YV, Mullen AC. Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in HSCs. Hepatology 2024:01515467-990000000-00834. [PMID: 38563629 DOI: 10.1097/hep.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-β2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Kaveh Daneshvar
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amel Ben Saad
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Arcadia J Kratkiewicz
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin J Toles
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Nahid Arghiani
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Anja Hess
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Y Chen
- Department of Medicine, Liver Center, University of California, San Francisco, California, USA
| | - Joshua V Pondick
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel R York
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyang Li
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean P Moran
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan D Gentile
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Raza Ur Rahman
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Peng Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Robert P Sparks
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Tim Habboub
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Byeong-Moo Kim
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Y Choi
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Silvia Affo
- Department of Liver, Digestive System, and Metabolism, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yury V Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan C Mullen
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Jiao K, Yang K, Wang J, Ni Y, Hu C, Liu J, Zhou M, Zheng J, Li Z. 27-Hydroxycholesterol induces liver fibrosis via down-regulation of trimethylation of histone H3 at lysine 27 by activating oxidative stress; effect of nutrient interventions. Free Radic Biol Med 2024; 210:462-477. [PMID: 38056577 DOI: 10.1016/j.freeradbiomed.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Chronic liver injury caused by activation of hepatic stellate cells (HSCs) is a key event in the development of liver fibrosis (LF). A high-cholesterol diet can prompt accumulation of free cholesterol in HSCs, which promotes HSC activation and progression of LF. OBJECTIVE 27-Hydroxycholesterol (27HC) is the most abundant cholesterol metabolite. Here, we investigated whether the HSC activation and LF induced by high cholesterol is caused by its metabolite 27HC, and whether TGFβ classical signaling were involved in these processes. METHODS In vitro, LX2 and HSC-T6 cells were used to explore the effects of 27HC on activation of HSCs, while LSECs were used to observe the effects of 27HC on capillarization. In vivo, zebrafish were used to assess the effect of 27HC on LF. RESULTS The cholesterol metabolite 27HC promoted the proliferation of HSCs and up-regulated expression of COL-1 and α-SMA as well as CTGF and TIMP1. Also, 27HC up-regulated expression of Smad2/3 and phosphorylated Smad2/3 in HSCs. Furthermore, 27HC-induced up-regulation of COL-1, α-SMA, CTGF, and TIMP1 protein levels was inhibited by Smad2/3 knockout. In addition, 27HC down-regulated H3K27me3 by inhibition of EZH2 and promotion of UTX and JMJD3 expression via the TGFβ signaling, thereby inducing activation of HSCs. Notably, 27HC significantly aggravated the pathological damage induced by DEN, and induced deposition of collagen fibers in zebrafish liver. Folic acid (FA) and resveratrol (RES) both reduced 27HC-induced production of reactive oxygen species (ROS) and inhibited the effects of TGFβ signaling on EZH2, UTX, and JMJD3, thereby increasing H3K27me3, and finally jointly inhibiting LF. CONCLUSION Cholesterol is metabolized to 27HC, which mediates activation of HSCs and onset of LF. Reduced expression of H3k27me3 by TGFβ signaling is crucial to 27HC-induced LF. FA and RES ameliorated activation of HSCs and LF by reducing 27HC-induced production of ROS and regulating of H3K27me3.
Collapse
Affiliation(s)
- Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Keke Yang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Jie Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Ni
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Liu
- Department of Nutrition, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jin Zheng
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|