1
|
Zhang M, Han Y. MicroRNAs in chronic pediatric diseases (Review). Exp Ther Med 2024; 27:100. [PMID: 38356668 PMCID: PMC10865459 DOI: 10.3892/etm.2024.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
MicroRNAs are small non-coding RNAs with a length of 20-24 nucleotides. They bind to the 3'-untranslated region of target genes to induce the degradation of target mRNAs or inhibit their translation. Therefore, they are involved in the regulation of development, apoptosis, proliferation, differentiation and other biological processes (including hormone secretion, signaling and viral infections). Chronic diseases in children may be difficult to treat and are often associated with malnutrition resulting from a poor diet. Consequently, further complications, disease aggravation and increased treatment costs impose a burden on patients and their families. Existing evidence suggests that microRNAs are involved in various chronic non-neoplastic diseases in children. The present review discusses the roles of microRNAs in five major chronic diseases in children, namely, diabetes mellitus, congenital heart diseases, liver diseases, bronchial asthma and epilepsy, providing a theoretical basis for them to become therapeutic biomarkers in chronic pediatric diseases.
Collapse
Affiliation(s)
- Mingyao Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yanhua Han
- Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
2
|
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers. Int J Mol Sci 2021; 22:ijms22137156. [PMID: 34281210 PMCID: PMC8269043 DOI: 10.3390/ijms22137156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed, showing their possible employment as therapeutic targets.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70100 Bari, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit, University of Bari “Aldo Moro”, 70100 Bari, Italy; (L.A.); (A.Z.); (P.M.)
- Correspondence: ; Tel.: +39(0)-80-547-8031; Fax: +39-(0)80-559-3471
| |
Collapse
|
3
|
Farahat NMG, Elkaffash DMNED, Alghandour AH, Swelem RS, Abo El-Wafa RAH. Study of microRNA Profile as a Molecular Biomarker in Egyptian Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2019; 35:89-99. [PMID: 30828154 PMCID: PMC6369084 DOI: 10.1007/s12288-018-1000-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/31/2018] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs target mRNAs for cleavage or translational repression. They play a critical role in the progression of malignancies and leukemias including chronic lymphocytic leukemia (CLL). However, microRNA expression levels in Egyptian patients with CLL, and their prognostic value remain elusive. Our main aim was to assess the expression pattern of a panel of microRNAs in CLL patients to create an informative microRNA profile. The study subjects were 40 newly diagnosed CLL patients of both sexes and 40 age and sex matched controls. The expression levels of 12 microRNAs were evaluated by qRT-PCR, including miR-15a, 16, 23b, 24, 29a, 29c, 34a, 146a, 155, 181a, 195, and 221. Flow cytometry was used to determine the expression levels of BCL2, CD38, and ZAP-70 in CLL patients. We identified various degrees of upregulated miRNAs (miR-29a, miR-29c, miR-34a, miR-155, miR-146a, and miR-195) and down-regulated ones (miR-15a, miR-16, miR-23b, miR-24, miR-181a, and miR-221) in CLL patients relative to controls. The mean fluorescence intensity ratio (MFI-R) of BCL2 was recorded and was significantly upregulated in CLL patients compared with normal controls. In addition, inverse correlations were observed between microRNAs (miR-15a, miR-16, miR-155, and miR-195) and BCL2 MFI-R while positive correlations were observed between miR-29a and miR-29c, and BCL2 MFI-R. These findings suggest that these miRNAs regulate BCL2 levels. Moreover, we found that miR-15a, miR-16, miR-155, miR-181a, miR-195 and miR-221 were significantly upregulated, while miR-29a and miR-29c were significantly downregulated in ZAP-70 positive CLL patients. Various miRNAs may play an important role in the pathogenesis of CLL and have the potential to be used for the prognosis of patients with CLL.
Collapse
Affiliation(s)
- Nahla Mohamed Gamal Farahat
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| | - Dalal Mohamed Nasr El Din Elkaffash
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| | - Ashraf Hussein Alghandour
- Internal Medicine (Hematology), Faculty of Medicine, Alexandria University, Azarita, Alexandria Egypt
| | - Rania Shafik Swelem
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| | - Reham Abdel Haleem Abo El-Wafa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Khartoum Square, El Sultan Hussein Street, Azarita, Alexandria 21131 Egypt
| |
Collapse
|
4
|
Szurián K, Csala I, Piurkó V, Deák L, Matolcsy A, Reiniger L. Quantitative miR analysis in chronic lymphocytic leukaemia/small lymphocytic lymphoma – proliferation centres are characterized by high miR-92a and miR-155 and low miR-150 expression. Leuk Res 2017; 58:39-42. [DOI: 10.1016/j.leukres.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023]
|
5
|
Furtado FM, Scheucher PS, Santana BA, Zanette DL, Calado RDT, Rego EM, Matos DM, Falcão RP. Comparison of microRNA expression in high-count monoclonal B-cell lymphocytosis and Binet A chronic lymphocytic leukemia. Rev Bras Hematol Hemoter 2017; 39:237-243. [PMID: 28830603 PMCID: PMC5568587 DOI: 10.1016/j.bjhh.2017.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/24/2017] [Accepted: 03/24/2017] [Indexed: 11/05/2022] Open
Abstract
Background Evidence suggests that monoclonal B-cell lymphocytosis precedes all chronic lymphocytic leukemia cases, although the molecular mechanisms responsible for disease progression are not understood. Aberrant miRNA expression may contribute to the pathogenesis of chronic lymphocytic leukemia. The objective of this study was to compare miRNA expression profiles of patients with Binet A chronic lymphocytic leukemia with those of subjects with high-count monoclonal B-cell lymphocytosis and healthy volunteers (controls). Methods Twenty-one chronic lymphocytic leukemia patients, 12 subjects with monoclonal B-cell lymphocytosis and ten healthy volunteers were enrolled in this study. Flow cytometry CD19+CD5+-based cell sorting was performed for the chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis groups and CD19+ cells were sorted to analyze the control group. The expressions of miRNAs (miR-15a, miR-16-1, miR-29b, miR-34a, miR-181a, miR-181b and miR-155) were determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results Significant differences between the expressions in the chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis groups were restricted to the expression of miR-155, which was higher in the former group. A comparison between healthy controls and monoclonal B-cell lymphocytosis/chronic lymphocytic leukemia patients revealed higher miR-155 and miR-34a levels and lower miR-15a, miR-16-1, miR-181a and miR-181b in the latter group. Conclusions Our results show a progressive increase of miR-155 expression from controls to monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia. The role of miR-155 in the development of overt chronic lymphocytic leukemia in individuals with monoclonal B-cell lymphocytosis must be further analyzed.
Collapse
|
6
|
Chen L, Xiao H, Wang ZH, Huang Y, Liu ZP, Ren H, Song H. miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A. BMB Rep 2014; 47:39-44. [PMID: 24209632 PMCID: PMC4163842 DOI: 10.5483/bmbrep.2014.47.1.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 11/20/2022] Open
Abstract
Increasing data shows miR-29a is a key regulator of oncogenic processes. It is significantly down-regulated in some kind of human tumors and possibly functionally linked to cellular proliferation, survival and migration. However, the mechanism remains unclear. In this study, we report miR-29a is significantly under-expressed in gastric cancer compared to the healthy donor. The microvessel density is negatively related to miR-29a expression in gastric cancer tissues. The ectopic expression of miR-29a significantly inhibits proliferation and invasion of gastric cancer cells. Furthermore, western blot combined with the luciferase reporter assays demonstrate that vascular endothelial growth factor A (VEGF-A) is direct target of miR-29a. This is the first time miR-29a was found to suppress the tumor microvessel density in gastric cancer by targeting VEGF-A. Taken together, these results suggest that miR-29a is a tumor suppressor in gastric cancer. Restoration of miR-29a in gastric cancer may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Ling Chen
- Department of Gastroenterology, the 324 th Hospital of PLA, Chongqing 400020, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Benetatos L, Vartholomatos G. MicroRNAs mark in the MLL-rearranged leukemia. Ann Hematol 2013; 92:1439-50. [DOI: 10.1007/s00277-013-1803-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/20/2013] [Indexed: 01/02/2023]
|
8
|
Wang LQ, Liang R, Chim CS. Methylation of tumor suppressor microRNAs: lessons from lymphoid malignancies. Expert Rev Mol Diagn 2013; 12:755-65. [PMID: 23153241 DOI: 10.1586/erm.12.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNAs are a group of small noncoding RNAs measuring 19-25 nucleotides. Sequence-specific binding of miRNAs to the 3´ untranslated regions of target genes leads to translational repressions. Dysregulation of miRNA expression involved in cancer can be triggered by multiple mechanisms including aberrant DNA methylation of the miRNA gene promoter. Of note, DNA methylation of tumor suppressor miRNAs has been implicated in various human cancers. Moreover, miRNA silencing mediated by aberrant promoter DNA methylation can potentially be reversed by hypomethylating agents, and hence may pose a new therapeutic target in cancer. In this review, the authors will focus on the aberrant methylation of miRNAs in the pathogenesis of lymphoid malignancies including chronic lymphocytic leukemia, multiple myeloma and acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
9
|
Srivastava S, Tsongalis GJ, Kaur P. Recent advances in microRNA-mediated gene regulation in chronic lymphocytic leukemia. Clin Biochem 2013; 46:901-8. [PMID: 23518313 DOI: 10.1016/j.clinbiochem.2013.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 03/01/2013] [Accepted: 03/08/2013] [Indexed: 01/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world and is a very clinically heterogeneous disease for which better prognostic biomarkers are needed. Current prognostic markers exhibit both biological and technical limitations. MicroRNAs (miRNAs) are small endogenous, non-coding 22-nucleotide regulatory RNAs that have been shown to modulate hematopoietic lineage differentiation and play important gene-regulatory roles in disease processes. In this manuscript, we review miRNA biology and the association of specific miRNAs with CLL.
Collapse
Affiliation(s)
- Swati Srivastava
- Department of Pathology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
10
|
Programmed cell death proteins and chronic leukemia. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1103527b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Apoptosis or programmed cell death is a genetically regulated process of
cellular suicide. Apoptosis has been implicated in a wide range of
pathological conditions, and mutations in apoptotic genes play important
roles in the process of malignant transformation. Chronic leukemia represents
a neoplastic disorder caused primarily by defective programmed cell death, as
opposed to increased cell proliferation. This paper presents the main results
of our ten-year research on the apoptosis of leukemia cells. The research
included the morphological aspects of the process, the effect of
antineoplastic agents on the induction of apoptosis in leukemia cells and
expression analysis of the proteins involved in programmed cell death.
Special attention was paid to the expression and interaction of the Bcl-2
family of proteins in leukemia cells. The ultimate aim of the study of
apoptosis of leukemic cells is the discovery of new biological agents that
might be used in the treatment of chronic leukemia.
Collapse
|