1
|
Raikhelson KL, Kondrashina EA, Pazenko EV. Principles of treatment of different forms of alcoholic liver disease: A review. TERAPEVT ARKH 2023; 95:187-192. [PMID: 37167136 DOI: 10.26442/00403660.2023.02.202071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The review considers the principles of treatment of various forms of alcoholic liver disease from the point of view of the evidence base and clinical recommendations. The main therapy for severe alcoholic hepatitis is systemic glucocorticosteroids, their effect on survival is increased by the addition of antioxidants (N-acetylcysteine, ademethionine). The effect of ademetionine on the life expectancy of patients with alcoholic cirrhosis of ChildPugh class A and B has been proven. The treatment of patients with mild forms of alcoholic liver disease is not well developed, and the evidence base for most of the drugs used is modest.
Collapse
|
2
|
El‐Naggar SA, El‐Barbary AA, Salama WM, Elkholy HM. Synthesis, characterization, and biological activities of folic acid conjugates with polyvinyl alcohol, chitosan, and cellulose. J Appl Polym Sci 2022. [DOI: 10.1002/app.52250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Wesam M. Salama
- Zoology Department, Faculty of Science Tanta University Tanta Egypt
| | - Hazem M. Elkholy
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
3
|
Petagine L, Zariwala MG, Patel VB. Alcoholic liver disease: Current insights into cellular mechanisms. World J Biol Chem 2021; 12:87-103. [PMID: 34630912 PMCID: PMC8473419 DOI: 10.4331/wjbc.v12.i5.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) due to chronic alcohol consumption is a significant global disease burden and a leading cause of mortality. Alcohol abuse induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of ALD is widely recognized, the precise triggers for disease progression are still to be fully elucidated. Oxidative stress, mitochondrial dysfunction, gut dysbiosis and altered immune system response plays an important role in disease pathogenesis, triggering the activation of inflammatory pathways and apoptosis. Despite many recent clinical studies treatment options for ALD are limited, especially at the alcoholic hepatitis stage. We have therefore reviewed some of the key pathways involved in the pathogenesis of ALD and highlighted current trials for treating patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| | - Vinood B Patel
- Center for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W 6UW, United Kingdom
| |
Collapse
|
4
|
Guo C, Xue G, Pan B, Zhao M, Chen S, Gao J, Chen T, Qiu L. Myricetin Ameliorates Ethanol-Induced Lipid Accumulation in Liver Cells by Reducing Fatty Acid Biosynthesis. Mol Nutr Food Res 2019; 63:e1801393. [PMID: 31168926 DOI: 10.1002/mnfr.201801393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/28/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Alcoholic liver disease is a serious threat to human health. The development of drug candidates from complementary and alternative medicines is an attractive approach. Myricetin can be found in fruit, vegetables, and herbs. This study investigates the protective effect of myricetin on ethanol-induced injury in mouse liver cells. METHODS AND RESULTS Oil-red O staining, assays of oxidative stress and measurements of inflammatory markers in mouse AML12 liver cells collectively demonstrate that myricetin elicits a curative effect on ethanol-induced injury. Next, the role of myricetin in the metabolic regulation of ethanol pathology in liver cells is assessed by gas chromatography coupled with mass spectrometry. Myricetin inhibits ethanol-stimulated fatty acid biosynthesis. Additionally, dodecanoic acid may be proposed as a potential biomarker related to ethanol pathology or myricetin therapy. It is also observed that myricetin enhances ethanol-induced inhibition of the mitochondrial electron transport chain. Moreover, fumaric acid is found to be a candidate biomarker related to ethanol toxicity or myricetin therapy. Quantitative reverse-transcription-PCR shows that ethanol-induced fatty acid synthase and sterol regulatory element-binding protein-1c mRNA levels are alleviated by myricetin. Finally, myricetin increases ethanol-induced inhibition of phosphorylation of AMP-activated protein kinase. CONCLUSION These results elucidate the pharmacological mechanism of myricetin on ethanol-induced lipid accumulation.
Collapse
Affiliation(s)
- Chang Guo
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| | - Guoqing Xue
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Bei Pan
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Mengjie Zhao
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Si Chen
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Jing Gao
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Tong Chen
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| | - Longxin Qiu
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| |
Collapse
|
5
|
Brzački V, Mladenović B, Dimić D, Jeremić L, Živanović D, Djukić D, Stojanović NM, Sokolović DT. Comparison between the effects of selenomethionine and S-adenosylmethionine in preventing cholestasis-induced rat liver damage. Amino Acids 2019; 51:795-803. [DOI: 10.1007/s00726-019-02716-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
|
6
|
Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector. Eur J Gastroenterol Hepatol 2018; 30:893-900. [PMID: 29683981 DOI: 10.1097/meg.0000000000001141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic liver diseases result in overall deterioration of health status and changes in metabolism. The search for strategies to control and combat these hepatic diseases has witnessed a great boom in the last decades. Nutritional therapy for controlling and managing liver diseases may be a positive influence as it improves the function of the liver. In this review, we focus mainly on describing liver conditions such as nonalcoholic fatty liver disease, and intrahepatic cholestasis as well as using S-adenosyl-L-methionine as a dietary supplement and its potential alternative therapeutic effect to correct the hepatic dysfunction associated with these conditions.
Collapse
|
7
|
EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69:154-181. [PMID: 29628280 DOI: 10.1016/j.jhep.2018.03.018] [Citation(s) in RCA: 514] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
|
8
|
Abstract
Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease.
Collapse
Affiliation(s)
- Winston Dunn
- Gastroenterology & Hepatology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS USA
| | - Vijay H. Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
9
|
Zhang F, Gu JX, Zou XP, Zhuge YZ. Protective effects of S-adenosylmethionine against CCl4- and ethanol-induced experimental hepatic fibrosis. Mol Biol 2016. [DOI: 10.1134/s0026893316020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kim MS, Ong M, Qu X. Optimal management for alcoholic liver disease: Conventional medications, natural therapy or combination? World J Gastroenterol 2016; 22:8-23. [PMID: 26755857 PMCID: PMC4698510 DOI: 10.3748/wjg.v22.i1.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is the principal factor in the pathogenesis of chronic liver diseases. Alcoholic liver disease (ALD) is defined by histological lesions on the liver that can range from simple hepatic steatosis to more advanced stages such as alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma and liver failure. As one of the oldest forms of liver injury known to humans, ALD is still a leading cause of liver-related morbidity and mortality and the burden is exerting on medical systems with hospitalization and management costs rising constantly worldwide. Although the biological mechanisms, including increasing of acetaldehyde, oxidative stress with induction of cytochrome p450 2E1, inflammatory cytokine release, abnormal lipid metabolism and induction of hepatocyte apoptosis, by which chronic alcohol consumption triggers serious complex progression of ALD is well established, there is no universally accepted therapy to prevent or reverse. In this article, we have briefly reviewed the pathogenesis of ALD and the molecular targets for development of novel therapies. This review is focused on current therapeutic strategies for ALD, including lifestyle modification with nutrition supplements, available pharmacological drugs and new agents that are under development, liver transplantation, application of complementary medicines, and their combination. The relevant molecular mechanisms of each conventional medication and natural agent have been reviewed according to current available knowledge in the literature. We also summarized efficacy vs safety on conventional and herbal medicines which are specifically used for the prevention and treatment of ALD. Through a system review, this article highlighted that the combination of pharmaceutical drugs with naturally occurring agents may offer an optimal management for ALD and its complications. It is worthwhile to conduct large-scale, multiple centre clinical trials to further prove the safety and benefits for the integrative therapy on ALD.
Collapse
|
11
|
Neuman MG, Malnick S, Maor Y, Nanau RM, Melzer E, Ferenci P, Seitz HK, Mueller S, Mell H, Samuel D, Cohen LB, Kharbanda KK, Osna NA, Ganesan M, Thompson KJ, McKillop IH, Bautista A, Bataller R, French SW. Alcoholic liver disease: Clinical and translational research. Exp Mol Pathol 2015; 99:596-610. [PMID: 26342547 DOI: 10.1016/j.yexmp.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023]
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | | | - Helmut K Seitz
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Sebastian Mueller
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Haim Mell
- Israel Antidrug and Alcohol Authority, Jerusalem, Israel
| | - Didier Samuel
- Liver Transplant Unit, Research Inserm-Paris XI Unit 785, Centre Hepatobiliaire, Hopital Paul Brousse, Villejuif, Paris, France
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, Canada
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
12
|
Abstract
Betaine supplements of alcoholic beverages are proposed to prevent the development of alcoholic liver disease in patients that abuse alcohol. This recommendation is based on the observation of studies where it has been shown in binge drinking and chronic ethanol feeding animal models that betaine prevents liver injury resulting from high blood alcohol levels. The basic observation is that betaine added to ethanol being ingested increases the elimination rate of blood alcohol, which prevents the blood alcohol levels (BALs) from reaching high levels. The mechanism of how betaine does this is postulated to be that betaine causes the increase in the elimination rate by increasing the metabolic rate which generates NAD the rate limiting cofactor of alcohol oxidation by ADH. Betaine does this most likely by supporting the methylation of norepinephrine to form epinephrine by phenylethanolamine N-methyltransferase. Epinephrine is 5 to 10-fold more active than norepinephrine in increasing the metabolic rate.
Collapse
Affiliation(s)
- S W French
- Harbor-UCLA Medical Center, Torrance, CA 90509, United States.
| |
Collapse
|
13
|
Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014; 20:12908-12933. [PMID: 25278688 PMCID: PMC4177473 DOI: 10.3748/wjg.v20.i36.12908] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α.
Collapse
|