1
|
Ceccon C, Borga C, Angerilli V, Bergamo F, Munari G, Sabbadin M, Gasparello J, Schiavi F, Zovato S, Scarpa M, Urso EDL, Dei Tos AP, Luchini C, Grillo F, Lonardi S, Parente P, Fassan M. MLH1 gene promoter methylation status partially overlaps with CpG methylator phenotype (CIMP) in colorectal adenocarcinoma. Pathol Res Pract 2024; 266:155786. [PMID: 39724851 DOI: 10.1016/j.prp.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND RAS/BRAF mutations, mismatch DNA repair complex deficiency (MMRd)/microsatellite instability (MSI), and CpG methylator phenotype (CIMP) are key molecular actors in colorectal carcinogenesis. To date, conflicting evidence about the correlations between these molecular features has been reported. MATERIALS AND METHODS A retrospectively selected cohort of 123 CRCs was divided into 3 groups based on the molecular characteristics: MMR proficient (MMRp)/BRAF p.V600E mutated (BRAFmut), MMRd/BRAFmut, and MMRd/BRAF wild type (BRAFwt). MLH1 promoter (pMLH1) methylation status was assessed by pyrosequencing. For 82 samples the CIMP phenotype was evaluated using the EpiTect® MethyLight kit. RESULTS The MMRd/BRAFmut group showed a higher pMLH1 methylation rate compared to both the MMRd/BRAFwt and the MMRp/BRAFmut groups. Overall, the two MMRd groups had a higher methylation rate compared to the MMRp cases independently from the mutational status of BRAF (p-value <0.0001). The MMRd/BRAFmut group was characterized by a 90.0 % of CIMP high (CIMP-H) tumors of which 97.2 % were pMLH1 methylated. Instead, the MMRd/BRAFwt group presented 50.0 % of CIMP-H adenocarcinomas. CONCLUSIONS Our study demonstrates that pMLH1 hypermethylation, MMRd, BRAFmut and CIMP phenotype do not completely overlap in CRC. These findings further refine the knowledge on the molecular landscape of CRC and may have critical implications also for the clinical management of the disease.
Collapse
Affiliation(s)
- Carlotta Ceccon
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Chiara Borga
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Valentina Angerilli
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | - Giada Munari
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Marianna Sabbadin
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | | | | | - Marco Scarpa
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Azienda Ospedale-Università Padova, Padua, Italy
| | - Emanuele Damiano Luca Urso
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Azienda Ospedale-Università Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Federica Grillo
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy
| | - Sara Lonardi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.
| |
Collapse
|
2
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
3
|
Hashem O, Shahin AI, Al Hindawi MA, Fageeri MF, Al-Sbbagh SA, Tarazi H, El-Gamal MI. An overview of RAF kinases and their inhibitors (2019-2023). Eur J Med Chem 2024; 275:116631. [PMID: 38954961 DOI: 10.1016/j.ejmech.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.
Collapse
Affiliation(s)
- Omar Hashem
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Manar A Al Hindawi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed F Fageeri
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif A Al-Sbbagh
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Sabt A, Khedr MA, Eldehna WM, Elshamy AI, Abdelhameed MF, Allam RM, Batran RZ. New pyrazolylindolin-2-one based coumarin derivatives as anti-melanoma agents: design, synthesis, dual BRAF V600E/VEGFR-2 inhibition, and computational studies. RSC Adv 2024; 14:5907-5925. [PMID: 38370458 PMCID: PMC10870110 DOI: 10.1039/d4ra00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Malignant melanoma is the most invasive skin cancer with the highest risk of death. The inhibition of BRAFV600E appears relevant for overcoming secondary resistance developed during melanoma treatment. BRAFV600E triggers angiogenesis via modification of the expression of angiogenic inducers, which play a crucial role in the metastasis of melanoma. Accordingly, the dual inhibition of the BRAFV600E/VEGFR-2 signaling pathway is considered a rational approach in the design of anti-melanoma candidates. In this study, a new class of pyrazolylindolin-2-one linked coumarin derivatives as dual BRAFV600E/VEGFR-2 inhibitors targeting A375 melanoma cells was designed. Target compounds were tailored to occupy the pockets of BRAFV600E and VEGFR-2. Most of the synthesized compounds demonstrated potent mean growth inhibitory activity against A375 cells. Compound 4j was the most active cytotoxic derivative, displaying an IC50 value at a low micromolar concentration of 0.96 μM with a significant safety profile. Moreover, 4j showed dual potent inhibitory activity against BRAFV600E and VEGFR-2 (IC50 = 1.033 and 0.64 μM, respectively) and was more active than the reference drug sorafenib. Furthermore, derivative 4j caused significant G0/G1 cell cycle arrest, induced apoptosis, and inhibited the migration of melanoma cells. Molecular docking showed that compound 4j achieved the highest ΔG value of -9.5 kcal mol-1 against BRAFV600E and significant ΔG of -8.47 kcal mol-1 against VEGFR-2. Furthermore, the structure-activity relationship study revealed that TPSA directly contributed to the anticancer activity of the tested compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohammed A Khedr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University Safat 13110 Kuwait
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University 11795 Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| |
Collapse
|
5
|
Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM. Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor. J Biomol Struct Dyn 2023; 42:13564-13587. [PMID: 37909584 DOI: 10.1080/07391102.2023.2276879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akm Moyeenul Huq
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Bangladesh
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saiful Nizam Tajuddin
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
6
|
da Silva SIO, Domingos TA, Kupper BEC, De Brot L, Aguiar Junior S, Carraro DM, Torrezan GT. Amplicon-based NGS test for assessing MLH1 promoter methylation and its correlation with BRAF mutation in colorectal cancer patients. Exp Mol Pathol 2023; 130:104855. [PMID: 36736685 DOI: 10.1016/j.yexmp.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Detecting MLH1 promoter methylation is highly relevant to differentiate between possible Lynch syndrome patients or patients with sporadic causes of MLH1/PMS2 deficiency in colorectal (CRC) and endometrial cancers. Here, we aimed to develop a test for assessing MLH1 promoter methylation based in next generation sequencing (NGS), and to evaluate the concordance of MLH1 methylation and BRAF-V600 mutation status in CRC. For that, we performed a series of experiments with DNA from tumor, saliva and commercial control samples and our in house developed amplicon-based NGS test. In patients' samples, MLH1 methylation above 10% was only observed in tumors with MLH1/PMS2 loss. We confirmed the reproducibility and accuracy of MLH1 promoter analysis performing a serial dilution experiment with completely methylated and unmethylated control DNAs and a comparison between two NGS platforms (Ion Proton and Illumina). In MLH1/PMS2 deficient tumors, the MLH1 methylation status was concordant with the BRAF mutation status in 90% (18/20) of the cases. Our amplicon-based NGS test showed a great sensitivity and specificity for detecting MLH1 methylation in CRC samples, with a high agreement with the evaluation of BRAF mutation. This simple and affordable test could be used as a reflex test to identify patients with sporadic causes of MLH1/PMS2 deficiency in CRC, aiding to genetic test referral and identification of Lynch syndrome patients.
Collapse
Affiliation(s)
| | | | | | - Louise De Brot
- Department of Anatomic Pathology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Dirce Maria Carraro
- Clinical and Functional Genomics, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil; National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil; National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil.
| |
Collapse
|
7
|
Downs BM, Sukumar S. Capturing ctDNA from Unaltered Stationary and Flowing Plasma with dCas9. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24113-24121. [PMID: 35603357 DOI: 10.1021/acsami.2c03186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many studies have established that blood-based liquid biopsies can be used to detect cancer in its early stages. However, the limiting factor for early cancer detection is the volume of blood required to capture the small amount of circulating tumor DNA (ctDNA). An apheresis machine is a device that can draw whole blood, separate the blood components, and infuse the blood components back into the individual. This device provides the opportunity to screen large volumes of plasma without extracting it from the body. However, current DNA capture technologies require the plasma to be altered before the ctDNA can be captured. Our goal was to develop the first technology that can capture ctDNA from flowing unaltered plasma. To simulate cancer patient plasma, we spiked BRAF T1799A (BRAFMut) DNA into plasma from healthy individuals. We used catalytically dead Cas9 (dCas9), guide RNA, and allele-specific quantitative polymerase chain reaction (qPCR) to capture and measure the number of captured BRAFMut DNA copies. We found that dCas9 captured BRAFMut alleles with equal efficiency at room temperature (25 °C) and body temperature (37 °C). Next, we showed that, in stationary unaltered plasma, dCas9 was as efficient in capturing BRAFMut as a commercial cell-free DNA (cfDNA) capture kit. However, in contrast to the cfDNA capture kit, dCas9 enriched BRAFMut by 1.8-3.3-fold. We then characterized the dCas9 capture system in laminar and turbulent flowing plasma. We showed that the capture rate using turbulent flow was greater than that in laminar flow and stationary plasma. With turbulent flow, the number of captured BRAFMut copies doubles with time (slope = -1.035 Ct) and is highly linear (R2 = 0.874). While we showed that the dCas9 capture system can capture ctDNA from unaltered flowing plasma, further optimization and validation of this technology is required before its clinical utility can be determined.
Collapse
Affiliation(s)
- Bradley M Downs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Saraswati Sukumar
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
8
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Stachyra-Strawa P, Ciesielka M, Janiszewski M, Grzybowska-Szatkowska L. The role of immunotherapy and molecular‑targeted therapy in the treatment of melanoma (Review). Oncol Rep 2021; 46:158. [PMID: 34109986 DOI: 10.3892/or.2021.8109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/23/2021] [Indexed: 11/05/2022] Open
Abstract
Skin melanomas are malignant neoplasms originating from neuroectodermal melanocytes. Compared to other neoplasms, melanomas have a high rate of growth. Their incidence is highest in Australia and New Zealand, in high‑income European countries (Switzerland, Norway, Sweden) and in the US. In Poland, the standardized incidence rate is approximately 5/100,000. Melanomas are typically highly radioresistant and chemoresistant. Before the era of immunotherapy, inoperable lesions were treated using chemotherapy based mainly on dacarbazine, temozolomide or fotemustine, which did not yield the expected results in terms of extending survival time or improving patient comfort. Therefore, there has emerged a need to seek other solutions. In most cases, the use of immunological treatment or targeted therapy has had a positive impact on survival time and relapse‑free survival. However, these periods are still relatively short, hence the need for further research and improvement of treatment. The most promising strategies appear to be antibodies that block programmed death receptor‑1 (PD‑1) and programmed death receptor ligand‑1 (PD‑L1) molecules, anti‑CTLA4 antibodies (cytotoxic T‑lymphocyte antigen 4) and therapy with BRAF and MEK inhibitors.
Collapse
Affiliation(s)
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University of Lublin, 20‑093 Lublin, Poland
| | - Michał Janiszewski
- Department of Radiotherapy, Medical University of Lublin, 20‑093 Lublin, Poland
| | | |
Collapse
|
10
|
Li L, Li H, Zhang J, Gao X, Jin H, Liu R, Zhang Z, Zhang X, Wang X, Qu P, Zhao Y, Lu X. Bisphenol A at a human exposed level can promote epithelial-mesenchymal transition in papillary thyroid carcinoma harbouring BRAF V600E mutation. J Cell Mol Med 2021; 25:1739-1749. [PMID: 33469997 PMCID: PMC7875916 DOI: 10.1111/jcmm.16279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, alters the function of endocrine system and enhances the susceptibility to tumorigenesis in several hormone-dependent tumours as thyroid carcinoma. About 50% of papillary thyroid cancers (PTC), the most common type of thyroid malignancy, harbours the BRAFV600E mutation. This study aimed to investigate a potential combined effect of BPA exposure and BRAFV600E mutation on epithelial-mesenchymal transition (EMT) in PTC. Firstly, the level of BPA in plasma, the evaluation of BRAFV600E mutation and the level of EMT-related proteins in PTC samples were individually determined. Additionally, the migration, invasion, colony formation capacity and the expression of EMT-related proteins after exposure to BPA were precisely analysed in vitro thyroid cells genetically modified by the introduction of BRAFV600E mutation. Moreover, ERK-Cox2 signalling pathway was also introduced to explore the possible mechanism in PTC development. As expected, whether the clinical investigation or cultured thyroid cells demonstrated that BPA at a concentration compatible with human exposed levels (10-7 M) synergized with the BRAFV600E mutation promoted EMT via the activation of ERK-Cox2 signalling pathway. Our findings offer some evidence that BPA as an environmental risk factor can facilitate the progression of PTC harbouring BRAFV600E mutation.
Collapse
Affiliation(s)
- Liuli Li
- Department of Toxicology, School of Public health, China Medical University, Shenyang, China
| | - Hao Li
- Department of Toxicology, School of Public health, China Medical University, Shenyang, China
| | - Jun Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Xin Gao
- Department of head and Neck Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hao Jin
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, China
| | - Renqi Liu
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, China
| | - Zhen Zhang
- Jin Zhou Center for Disease Control and Prevention, Jinzhou, China
| | - Xuan Zhang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, China
| | - Xichang Wang
- Department of Toxicology, School of Public health, China Medical University, Shenyang, China
| | - Peng Qu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, China
| | - Yuejiao Zhao
- Department of head and Neck Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public health, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Śmiech M, Leszczyński P, Kono H, Wardell C, Taniguchi H. Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes (Basel) 2020; 11:genes11111342. [PMID: 33198372 PMCID: PMC7697059 DOI: 10.3390/genes11111342] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations can induce cellular alteration and malignant transformation. Development of many types of cancer is associated with mutations in the B-raf proto-oncogene (BRAF) gene. The encoded protein is a component of the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway, transmitting information from the outside to the cell nucleus. The main function of the MAPK/ERK pathway is to regulate cell growth, migration, and proliferation. The most common mutations in the BRAF gene encode the V600E mutant (class I), which causes continuous activation and signal transduction, regardless of external stimulus. Consequently, cell proliferation and invasion are enhanced in cancer patients with such mutations. The V600E mutation has been linked to melanoma, colorectal cancer, multiple myeloma, and other types of cancers. Importantly, emerging evidence has recently indicated that new types of mutations (classes II and III) also play a paramount role in the development of cancer. In this minireview, we discuss the influence of various BRAF mutations in cancer, including aberrant transcriptional gene regulation in the affected tissues.
Collapse
Affiliation(s)
- Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional, Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.Ś.); (P.L.)
| | - Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional, Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.Ś.); (P.L.)
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan;
| | - Christopher Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional, Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.Ś.); (P.L.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
12
|
Chavda J, Bhatt H. Systemic review on B-Raf V600E mutation as potential therapeutic target for the treatment of cancer. Eur J Med Chem 2020; 206:112675. [PMID: 32798788 DOI: 10.1016/j.ejmech.2020.112675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
Cancer is one of the major public catastrophes worldwide and as per WHO, cancer is the leading cause of death universally after CVS disorders accounting for 9.6 million deaths in 2018. WHO statistics revealed five dangerous types of cancer viz. lung, breast, colorectal, prostate and skin. In male, lung cancer causes highest death, while in female, breast cancer causes the most. Alteration in MAPK signalling pathway plays a significant role in majority of cancer cases. Raf protein is activated by phosphorylation via downstream regulation of the MAPK pathway. Raf composed of 3 subtypes, viz. A-Raf, B-Raf, and C-Raf. B-Raf kinase plays a significant role in healthy cell growth in the MAPK pathway and the problem associated with B-Raf mutation leads to the development of cancer and other diseases. The progression of mutant B-Raf (B-RafV600E) protein is higher in cancer as compare to other diseases. In 2002, B-RafV600E mutation was identified for the first time in the development of cancer. The frequency of B-RafV600E mutation is higher in melanoma, thyroid, colorectal and ovarian cancer. We have covered small molecule B-RafV600E inhibitors reported in various literatures; from 2002 to 2020 and also covered clinical trial data. To widen the scope of readers, we compiled details of small molecules, specifically inhibiting B-RafV600E mutant and showing anti-proliferative activity against various cancer cell lines along with in-vivo data. We believe that the information covered here will be important in signifying the potentials of B-RafV600E mutation and its inhibitors as potent anticancer agents.
Collapse
Affiliation(s)
- Jaydeepsinh Chavda
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India.
| |
Collapse
|
13
|
Zhang XY, Guo H, Huang Y, Hao PQ, Yang Y, Liu Y, Guo XX, Hao Q, An S, Xu TR. Comparative interactome analysis reveals distinct and overlapping properties of Raf family kinases. Biochem Biophys Res Commun 2019; 514:1217-1223. [DOI: 10.1016/j.bbrc.2019.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
|
14
|
Janku F, Diamond EL, Goodman AM, Raghavan VK, Barnes TG, Kato S, Abdel-Wahab O, Durham BH, Meric-Bernstam F, Kurzrock R. Molecular Profiling of Tumor Tissue and Plasma Cell-Free DNA from Patients with Non-Langerhans Cell Histiocytosis. Mol Cancer Ther 2019; 18:1149-1157. [PMID: 31015311 PMCID: PMC6548628 DOI: 10.1158/1535-7163.mct-18-1244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/16/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
The BRAF V600E mutation and BRAF inhibitor responsiveness characterize ∼50% of patients with the non-Langerhans cell histiocytosis (non-LCH) Erdheim-Chester disease (ECD). We interrogated the non-LCH molecular landscape [ECD, n = 35; Rosai-Dorfman disease (RDD), n = 3; mixed ECD/RDD, n = 1] using BRAF V600E PCR and/or next-generation sequencing [tissue and cell-free DNA (cfDNA) of plasma and/or urine]. Of 34 evaluable patients, 17 (50%) had the BRAF V600E mutation. Of 31 patients evaluable for non-BRAF V600E alterations, 18 (58%) had ≥1 alteration and 12 putative non-BRAF V600E MAPK pathway alterations: atypical BRAF mutation; GNAS, MAP2K1, MAP2K2, NF1, and RAS mutations; RAF1 or ERBB2 amplifications; LMNA-NTRK1 (TRK inhibitor-sensitive) and CAPZA2-BRAF fusions. Four patients had JAK2, MPL ASXL1, U2AF1 alterations, which can correlate with myeloid neoplasms, a known ECD predisposition, and one developed myelofibrosis 13 months after cfDNA testing. Therefore, our multimodal comprehensive genomics reveals clinically relevant alterations and suggests that MAPK activation is a hallmark of non-LCH.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas.
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Aaron M Goodman
- Center for Personalized Cancer Therapy, Division of Blood and Marrow Transplantation, Division of Hematology/Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Vaijayanthi Kandadai Raghavan
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Tamara G Barnes
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Shumei Kato
- Center for Personalized Cancer Therapy, Division of Blood and Marrow Transplantation, Division of Hematology/Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Omar Abdel-Wahab
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin H Durham
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Division of Blood and Marrow Transplantation, Division of Hematology/Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla, California
| |
Collapse
|
15
|
Chavda J, Bhatt H. 3D-QSAR (CoMFA, CoMSIA, HQSAR and topomer CoMFA), MD simulations and molecular docking studies on purinylpyridine derivatives as B-Raf inhibitors for the treatment of melanoma cancer. Struct Chem 2019. [DOI: 10.1007/s11224-019-01334-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:156. [PMID: 30975211 PMCID: PMC6460662 DOI: 10.1186/s13046-019-1094-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
Abstract
Cancer is currently the second leading cause of death globally and is expected to be responsible for approximately 9.6 million deaths in 2018. With an unprecedented understanding of the molecular pathways that drive the development and progression of human cancers, novel targeted therapies have become an exciting new development for anti-cancer medicine. These targeted therapies, also known as biologic therapies, have become a major modality of medical treatment, by acting to block the growth of cancer cells by specifically targeting molecules required for cell growth and tumorigenesis. Due to their specificity, these new therapies are expected to have better efficacy and limited adverse side effects when compared with other treatment options, including hormonal and cytotoxic therapies. In this review, we explore the clinical development, successes and challenges facing targeted anti-cancer therapies, including both small molecule inhibitors and antibody targeted therapies. Herein, we introduce targeted therapies to epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), anaplastic lymphoma kinase (ALK), BRAF, and the inhibitors of the T-cell mediated immune response, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1)/ PD-1 ligand (PD-1 L).
Collapse
Affiliation(s)
- N A Seebacher
- Faculty of Medicine, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - A E Stacy
- Faculty of Medicine, The University of Notre Dame, Darlinghurst, New South Wales, 2010, Australia
| | - G M Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia
| | - A M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,UNSW Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia.
| |
Collapse
|
17
|
Aboushousha T, Helal N, Hammam O, Ibrahim M, Khaled S, Mostafa A, Anas A. Overview of MDM2 and B-RAF Expression in Gastric Lesions. Open Access Maced J Med Sci 2018; 6:1795-1802. [PMID: 30455751 PMCID: PMC6236038 DOI: 10.3889/oamjms.2018.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Globally, gastric cancer (GC) it is the fourth most common cancer and the third cause of cancer-related deaths. Overexpression of MDM2 and B-RAF appeared to be increased in malignancy and associated with poor prognosis in several human tumours, but their role in gastric cancer remains controversial. AIM: We had investigated the immunohistochemical expression of MDM2 and B-RAF in 136 gastric lesions with/without H. pylori association. MATERIAL AND METHODS: Studied specimens include chronic gastritis (32), intestinal type GC (70), diffuse GC (22) and gastrointestinal stromal tumours (GIST) (12). RESULTS: MDM2 expression increased significantly in intestinal GC compared to other groups (p < 0.001), while B-RAF expression increased significantly in GIST compared to other groups (p < 0.001). H. pylori increased expression of MDM2 in intestinal GC cases but did not affect B-RAF expression. MDM2 expression correlated with high grade of tumor differentiation (p < 0.001), deep invasion (p < 0.05), nodal metastases (p < 0.05) and distant metastases (p < 0.1) in intestinal GC, while B-RAF expression did not correlate with TNM stage (p < 0.1). CONCLUSION: MDM2 up-regulation was more frequent in intestinal GC, while B-RAF up-regulation was more frequent in GIST compared to other groups; MDM2 expression in intestinal GC was correlated with H. pylori association, high grade of differentiation, deep invasion, nodal and distant metastases, meanwhile, B-RAF expression was correlated with high-grade intestinal GC but did not correlate with H. pylori or TNM stage. The possible role of both MDM2 and B-RAF in predicting progression of gastric tumours and prognosis deserves further investigations.
Collapse
Affiliation(s)
- Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Noha Helal
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Olfat Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Manar Ibrahim
- Faculty of Biotechnology, October University of Modern Sciences and Arts, Giza, Egypt
| | - Samar Khaled
- Faculty of Biotechnology, October University of Modern Sciences and Arts, Giza, Egypt
| | - Amr Mostafa
- Department of Surgery, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Amgad Anas
- Department of Hepato-Gastroenterology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
18
|
Valdeira ASC, Ritt DA, Morrison DK, McMahon JB, Gustafson KR, Salvador JAR. Synthesis and Biological Evaluation of New Madecassic Acid Derivatives Targeting ERK Cascade Signaling. Front Chem 2018; 6:434. [PMID: 30324102 PMCID: PMC6172662 DOI: 10.3389/fchem.2018.00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/03/2018] [Indexed: 01/29/2023] Open
Abstract
In the present study, a series of novel madecassic acid derivatives was synthesized and screened against the National Cancer Institute's 60 human cancer cell line panel. Among them, compounds 5, 12, and 17 displayed potent and highly differential antiproliferative activity against 80% of the tumor cells harboring the B-RafV600E mutation within the nanomolar range. Structure-activity analysis revealed that a 5-membered A ring containing an α,β-unsaturated aldehyde substituted at C-23 with a 2-furoyl group seems to be crucial to produce this particular growth inhibition signature. In silico analysis of the cytotoxicity pattern of these compounds identified two highly correlated clinically approved drugs with known B-RafV600E inhibitory activity. Follow-up analysis revealed inhibition of the ERK signaling pathway through the reduction of cellular Raf protein levels is a key mechanism of action of these compounds. In particular, 17 was the most potent compound in suppressing tumor growth of B-RafV600E-mutant cell lines and displayed the highest reduction of Raf protein levels among the tested compounds. Taken together, this study revealed that modifications of madecassic acid structure can provide molecules with potent anticancer activity against cell lines harboring the clinically relevant B-RafV600E mutation, with compound 17 identified as a promising lead for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Ana S C Valdeira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - James B McMahon
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Yan P, Ritt DA, Zlotkowski K, Bokesch HR, Reinhold WC, Schneekloth JS, Morrison DK, Gustafson KR. Macrophilones from the Marine Hydroid Macrorhynchia philippina Can Inhibit ERK Cascade Signaling. JOURNAL OF NATURAL PRODUCTS 2018; 81:1666-1672. [PMID: 29979591 PMCID: PMC6319658 DOI: 10.1021/acs.jnatprod.8b00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Six new macrophilone-type pyrroloiminoquines were isolated and identified from an extract of the marine hydroid Macrorhynchia philippina. The proton-deficient and heteroatom-rich structures of macrophilones B-G (2-7) were elucidated by spectroscopic analysis and comparison of their data with those of the previously reported metabolite macrophilone A (1). Compounds 1-7 are the first pyrroloiminoquines to be reported from a hydroid. The macrophilones were shown to inhibit the enzymatic conjugation of SUMO to peptide substrates, and macrophilones A (1) and C (3) exhibit potent and selective cytotoxic properties in the NCI-60 anticancer screen. Bioinformatic analysis revealed a close association of the cytotoxicity profiles of 1 and 3 with two known B-Raf kinase inhibitory drugs. While compounds 1 and 3 showed no kinase inhibitory activity, they resulted in a dramatic decrease in cellular protein levels of selected components of the ERK signal cascade. As such, the chemical scaffold of the macrophilones could provide small-molecule therapeutic leads that target the ERK signal transduction pathway.
Collapse
Affiliation(s)
- Pengcheng Yan
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Daniel A. Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Katherine Zlotkowski
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Heidi R. Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
20
|
Lv X, Wang D, Ma Y, Long Z. Analysis of the oncogene BRAF mutation and the correlation of the expression of wild-type BRAF and CREB1 in endometriosis. Int J Mol Med 2017; 41:1349-1356. [PMID: 29286077 PMCID: PMC5819909 DOI: 10.3892/ijmm.2017.3342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/06/2017] [Indexed: 12/15/2022] Open
Abstract
B-Raf proto-oncogene, serine/threonine kinase (BRAF) has previously been identified as a candidate target gene in endometriosis. Wild-type and mutated BRAF serve important roles in different diseases. The aim of the present study was to explore BRAF mutation, the mRNA and protein expression of wild-type BRAF (wtBRAF) in endometriosis, and the association between the expression levels of wtBRAF and the predicted transcription factor cAMP responsive element binding protein 1 (CREB1). In the present study, BRAF mutation was detected using Sanger sequencing among 30 ectopic and matched eutopic endometrium samples of patients with endometriosis as well as 25 normal endometrium samples, and no BRAF mutation was detected in exons 11 or 15. A region of ~2,000 bp upstream of the BRAF gene was then screened using NCBI and UCSC databases, and CREB1 was identified as a potential transcription factor of BRAF by analysis with the JASPAR and the TRANSFAC databases. Quantitative polymerase chain reaction was used to analysis the mRNA expression levels of wtBRAF and CREB1, and the corresponding protein expression levels were evaluated using immunohistochemistry and western blot analysis. The results revealed that the mRNA and protein expression levels of wtBRAF and CREB1 were significantly upregulated in the eutopic endometrial tissues of patients with endometriosis compared with normal endometrial tissues (P<0.05) and no significant difference in wtBRAF and CREB1 levels was detected between the ectopic and eutopic endometrium (P>0.05). In addition, correlation analysis revealed that the protein expression of CREB1 was positively correlated with the transcript level and protein expression of wtBRAF. It is reasonable to speculate that CREB1 may activate the transcription of wtBRAF through directly binding to its promoter, increasing BRAF expression and regulating the cell proliferation, migration and invasion of endometriosis.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Zaiqiu Long
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
21
|
Garces S, Medeiros LJ, Patel KP, Li S, Pina-Oviedo S, Li J, Garces JC, Khoury JD, Yin CC. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod Pathol 2017; 30:1367-1377. [PMID: 28664935 PMCID: PMC5837474 DOI: 10.1038/modpathol.2017.55] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/27/2022]
Abstract
Rosai-Dorfman disease is a histiocytic disorder with a poorly defined pathogenesis. Recent molecular studies have revealed recurrent mutations involving genes in the MAPK/ERK pathway in Langerhans cell histiocytosis and Erdheim-Chester disease. However, cases of Rosai-Dorfman disease have rarely been assessed. We performed next-generation sequencing to assess 134 genes on 21 cases of Rosai-Dorfman disease, including 13 women and 8 men with a median age of 43 years (range, 3-82). In all, 13 had extranodal, 5 had nodal, and 3 had coexistent nodal and extranodal disease. The head and neck region was the most common area involved (n=7). Mutation analysis detected point mutations in 7 (33%) cases, including KRAS (n=4) and MAP2K1 (n=3). No mutations were identified in ARAF, BRAF, PIK3CA, or any other genes assessed. Immunohistochemistry demonstrated p-ERK overexpression in 3 cases, all harboring MAP2K1 mutations. Patients carrying mutated genes were younger (median age, 10 vs 53 years, P=0.0347) with more pediatric patients (4/7 vs 1/14, P=0.0251). The presence of mutations correlated with location being more common in the head and neck region; 6/7 (86%) mutated vs 1/14 (7%) unmutated cases (P=0.0009). All 5 (100%) mutated cases with available staging information had a multifocal presentation, whereas only 3/11 (27%) unmutated patients had multifocal disease (P=0.0256). Treatment information was available in 10 patients, including radical resection (n=4), resection and radiation (n=3), and cladribine-based chemotherapy (n=3). With a median follow-up of 84 months (range, 7-352), 7 remained in clinical remission and 3 had persistent disease. No correlation between mutation status and clinical outcome was noted. In summary, we detected mutually exclusive KRAS and MAP2K1 mutations in one-third of cases of Rosai-Dorfman disease suggesting this subgroup are clonal and involve activation of MAPK/ERK pathway. Our data contribute to the understanding of the biology of Rosai-Dorfman disease and point to potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sergio Pina-Oviedo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingyi Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juan Carlos Garces
- Instituto Oncológico Nacional Dr. Juan Tanca Marengo, Guayaquil, Ecuador
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Langerhans cell histiocytosis associated with lymphoma: an incidental finding that is not associated with BRAF or MAP2K1 mutations. Mod Pathol 2017; 30:734-744. [PMID: 28084334 PMCID: PMC5839484 DOI: 10.1038/modpathol.2016.235] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/24/2023]
Abstract
Langerhans cell histiocytosis is characterized by a localized or systemic proliferation of Langerhans cells. BRAF mutations have been reported in 40-70% of cases and MAP2K1 mutations have been found in BRAF-negative cases, supporting that Langerhans cell histiocytosis is a true neoplasm, at least in mutated cases. In a small subset of patients, Langerhans cell histiocytosis is detected incidentally in a biopsy involved by lymphoma. These lesions are usually minute and rarely have been assessed for mutations. We assessed for BRAF and MAP2K1 mutations in seven cases of Langerhans cell histiocytosis detected incidentally in biopsies involved by lymphoma. We performed immunohistochemical analysis for phosphorylated (p)-ERK. There were four men and three women (median age, 54 years; range, 28-84). The biopsies included lymph nodes (n=6) and chest wall (n=1). The lymphomas included five classical Hodgkin lymphoma, one mantle cell lymphoma, and one angioimmunoblastic T-cell lymphoma. All cases were negative for BRAF V600E and MAP2K1 mutations. Nevertheless, three of seven cases showed ERK activation as shown by expression of p-ERK. We performed mutation analysis using a panel of 134 commonly mutated genes (including BRAF and MAP2K1) by next-generation sequencing on three cases, including two cases positive for p-ERK by immunohistochemistry. No mutations were detected in any of the three cases assessed. Six patients received therapy appropriate for their lymphoma. With a median follow-up of 21 months (range, 6-89), no patients developed disseminated or recurrent Langerhans cell histiocytosis. We conclude that lymphoma-associated Langerhans cell histiocytosis is a clinically benign process that is not associated with BRAF V600E or MAP2K1 mutations and, as suggested by others, the designation Langerhans cell hyperplasia may be more appropriate. Nevertheless, the expression of p-ERK in three cases suggests that the RAS-RAF-MAP2K-ERK pathway is activated, perhaps by non-mutational mechanisms induced by the presence of lymphoma or lymphoma-microenvironment interactions.
Collapse
|
23
|
Breton Q, Plouhinec H, Prunier‐Mirebeau D, Boisselier B, Michalak S, Menei P, Rousseau A. BRAF-V600E immunohistochemistry in a large series of glial and glial-neuronal tumors. Brain Behav 2017; 7:e00641. [PMID: 28293477 PMCID: PMC5346524 DOI: 10.1002/brb3.641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Some glial-neuronal tumors (GNT) (pleomorphic xantho-astrocytoma [PXA], ganglioglioma [GG]) display BRAF-V600E mutation, which represents a diagnostic clue to these entities. Targeted therapies against BRAF-V600 protein have shown promising results in GNT. The aim of this study was to assess the utility of BRAF-V600E immunohistochemistry (IHC, clone VE1) in daily practice in a series of 140 glial, and GNT compared to molecular biology (MB) techniques. METHODS We performed BRAF-V600E IHC on all 140 cases. We used Sanger sequencing and allele-specific quantitative PCR (ASQ-PCR) to detect BRAF-V600E mutation when sufficient amount of materiel was available. RESULTS BRAF-V600E immunostaining was detected in 29.5% of cases (41/140 cases; 61.5% GG/GC/AGG (32/52), 33% PXA, 6.6% pilocytic astrocytomas). In 47 cases, MB could be performed: Sanger sequencing and ASQ-PCR in 34 cases, ASQ-PCR only in 11 cases, and Sanger sequencing only in two cases. In initial tumors, Sanger sequencing identified BRAF-V600E mutation in 19.5% tumors (seven of 36 tested cases). ASQ-PCR showed mutation in 48.5% tumors (17/35 tested cases). In six cases (5 GG, one PXA), the results were discordant between IHC and MB; the five GG cases were immunopositive for BRAF-V600E but wild type with both MB techniques. In another 7 GG, the percentage of mutated (ganglion) cells was low, and Sanger sequencing failed to detect the mutation, which was detected by IHC and ASQ-PCR. CONCLUSIONS In tumors with few mutated cells (e.g., GG), anti-BRAF-V600E IHC appears more sensitive than Sanger sequencing. The latter, although considered as the gold standard, is not to be used up-front to detect BRAF mutation in GG. The combination of IHC and ASQ-PCR appears more efficient to appraise the indication of targeted therapies in these glioneuronal tumors.
Collapse
Affiliation(s)
- Quentin Breton
- Pathology DepartmentAngers University HospitalAngersFrance
| | | | | | - Blandine Boisselier
- Pathology DepartmentAngers University HospitalAngersFrance
- INSERM UMR‐1066, Micro‐ and Nanomedicine Biomimetics (MINT)Angers University HospitalAngersFrance
| | | | - Philippe Menei
- INSERM UMR‐1066, Micro‐ and Nanomedicine Biomimetics (MINT)Angers University HospitalAngersFrance
- Neurosurgery DepartmentAngers University HospitalAngersFrance
| | - Audrey Rousseau
- Pathology DepartmentAngers University HospitalAngersFrance
- INSERM UMR‐1066, Micro‐ and Nanomedicine Biomimetics (MINT)Angers University HospitalAngersFrance
| |
Collapse
|
24
|
Islam F, Gopalan V, Wahab R, Lee KTW, Haque MH, Mamoori A, Lu CT, Smith RA, Lam AKY. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum Genet 2017; 136:321-337. [DOI: 10.1007/s00439-017-1760-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022]
|
25
|
Rahman MA, Salajegheh A, Smith RA, Lam AKY. Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas. Endocrine 2016; 54:129-138. [PMID: 27179656 DOI: 10.1007/s12020-016-0985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of our study was to inhibit BRAF kinase expression and investigate its effect on cellular functions in thyroid carcinomas. 8505C (BRAF V600E/V600E) undifferentiated thyroid carcinoma cell line and B-CPAP (BRAF V600E/V600E) papillary thyroid carcinoma cell line were used to develop doxycycline-inducible anti-BRAF shRNA stable cell lines. The inhibitions of BRAF expression in these cells were confirmed with qPCR and Western blot. Impacts of BRAF protein inhibition on cellular functions and signalling pathways were observed through Western blot, proliferation and colony formation assays. BRAF kinase expression was inhibited 83 % in undifferentiated thyroid carcinoma and 82 % in papillary thyroid carcinoma (p < 0.05). As a result of BRAF kinase inhibition, reduction in MEK kinase activity was seen (p < 0.05) in both thyroid cancer cell lines (72 and 75 %, respectively). Initially, big drop in proliferation (p < 0.05) was observed (52 and 54 %, respectively), but later an increasing proliferation trend was noticed in BRAF kinase-inhibited cell lines. In addition, reduction in colony formation (p < 0.05) was seen in BRAF kinase-inhibited carcinoma cells (13 and 15 %, respectively). On the other hand, increase in AKT kinase activity (63 and 70 %, respectively; p < 0.05) was discovered in both BRAF kinase-inhibited carcinoma cells. Increased activation of alternative proliferation pathways (as determined by the increase of AKT kinase activity) counteracts the effect of BRAF kinase inhibition in thyroid carcinomas. Thus, alternative proliferation pathways should be inhibited for therapeutic suppression of BRAF-induced proliferation in thyroid carcinomas.
Collapse
Affiliation(s)
- Md Atiqur Rahman
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Robert Anthony Smith
- Faculty of Health, Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Pathology Queensland and Gold Coast University Hospital, Gold Coast, QLD, Australia.
- Head of Pathology, Griffith Medical School, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
26
|
|
27
|
Millet A, Martin AR, Ronco C, Rocchi S, Benhida R. Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Med Res Rev 2016; 37:98-148. [PMID: 27569556 DOI: 10.1002/med.21404] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer. While associated survival prognosis is good when diagnosed early, it dramatically drops when melanoma progresses into its metastatic form. Prior to 2011, the favored therapies include interleukin-2 and chemotherapies, regardless of their low efficiency and their toxicity. Following key biological findings, two new types of therapy have been approved. First, there are the targeted therapies, which rely on small molecule B-Raf and MEK inhibitors and allow the treatment of patients with B-Raf mutated melanoma. Second, there are the immunotherapies, with anti-CTLA-4 and anti-PD-1 antibodies that are used for patients harboring a B-Raf wild-type status. Both approaches have significantly improved patient survival, compared with alkylating agents, in the treatment of unresectable melanoma. Herein, we review the evolution of the treatment of melanoma starting from early discoveries to current therapies. A focus will be provided on drug discovery, synthesis, and mode of action of relevant drugs and the future directions of the domain to overcome the emergence of the resistance events.
Collapse
Affiliation(s)
- Antoine Millet
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| | | | - Cyril Ronco
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| | - Stéphane Rocchi
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, Nice, France.,Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France.,Service de Dermatologie, Hôpital Archet II, CHU Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| |
Collapse
|
28
|
Quantitative analysis of wild-type and V600E mutant BRAF proteins in colorectal carcinoma using immunoenrichment and targeted mass spectrometry. Anal Chim Acta 2016; 933:144-55. [DOI: 10.1016/j.aca.2016.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/10/2016] [Accepted: 05/22/2016] [Indexed: 01/17/2023]
|
29
|
Wang L, Lin L, Chen X, Sun L, Liao Y, Huang N, Liao W. Metastasis-associated in colon cancer-1 promotes vasculogenic mimicry in gastric cancer by upregulating TWIST1/2. Oncotarget 2016; 6:11492-506. [PMID: 25895023 PMCID: PMC4484471 DOI: 10.18632/oncotarget.3416] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/19/2015] [Indexed: 01/05/2023] Open
Abstract
Vasculogenic mimicry (VM) is a blood supply modality that is strongly associated with the epithelial-mesenchymal transition (EMT), TWIST1 activation and tumor progression. We previously reported that metastasis-associated in colon cancer-1 (MACC1) induced the EMT and was associated with a poor prognosis of patients with gastric cancer (GC), but it remains unknown whether MACC1 promotes VM and regulates the TWIST signaling pathway in GC. In this study, we investigated MACC1 expression and VM by immunohistochemistry in 88 patients with stage IV GC, and also investigated the role of TWIST1 and TWIST2 in MACC1-induced VM by using nude mice with GC xenografts and GC cell lines. We found that the VM density was significantly increased in the tumors of patients who died of GC and was positively correlated with MACC1 immunoreactivity (p < 0.05). The 3-year survival rate was only 8.6% in patients whose tumors showed double positive staining for MACC1 and VM, whereas it was 41.7% in patients whose tumors were negative for both MACC1 and VM. Moreover, nuclear expression of MACC1, TWIST1, and TWIST2 was upregulated in GC tissues compared with matched adjacent non-tumorous tissues (p < 0.05). Overexpression of MACC1 increased TWIST1/2 expression and induced typical VM in the GC xenografts of nude mice and in GC cell lines. MACC1 enhanced TWIST1/2 promoter activity and facilitated VM, while silencing of TWIST1 or TWIST2 inhibited VM. Hepatocyte growth factor (HGF) increased the nuclear translocation of MACC1, TWIST1, and TWIST2, while a c-Met inhibitor reduced these effects. These findings indicate that MACC1 promotes VM in GC by regulating the HGF/c-Met-TWIST1/2 signaling pathway, which means that MACC1 and this pathway are potential new therapeutic targets for GC.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Alayed K, Medeiros LJ, Patel KP, Zuo Z, Li S, Verma S, Galbincea J, Cason RC, Luthra R, Yin CC. BRAF and MAP2K1 mutations in Langerhans cell histiocytosis: a study of 50 cases. Hum Pathol 2016; 52:61-7. [PMID: 26980021 DOI: 10.1016/j.humpath.2015.12.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/11/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a proliferation of Langerhans cells, often associated with lymphocytes, eosinophils, macrophages, and giant cells. BRAF mutations, usually V600E, have been reported in 40%-70% of cases, and recently, MAP2K1 mutations have been reported in BRAF-negative cases. We assessed 50 cases of LCH for BRAF mutations and assessed a subset of cases for MAP2K1 mutations. The study group included 28 men and 22 women (median age, 36.5 years; range, 1-78 years). BRAF V600E mutation was detected in 8 (16%) cases including 3 (30%) skin, 2 (11%) bone, 1 (50%) colon, 1 (20%) lung, and 1 (33%) extradural, intracranial mass. MAP2K1 mutations were detected in 6 of 13 (46%) BRAF-negative cases including 2 (100%) lymph node, 2 (50%) bone, 1 (25%) skin, and 1 (100%) orbit. Patients with BRAF mutation were younger than patients with wild-type BRAF (median age, 28 versus 38 years; P = .026). The median age of MAP2K1-mutated patients was 34.5 years, similar to patients without MAP2K1 mutation (41 years; P = .368). In agreement with 2 recent studies, we showed a high frequency of MAP2K1 mutations in BRAF-negative LCH cases. Unlike other studies, the overall frequency of BRAF mutation in this cohort is substantially lower than what has been reported in pediatric patients, perhaps because most patients in this study were adults. Moreover, we showed a high concordance between mutational and immunohistochemical analysis for BRAF mutation. There was no statistically significant association between BRAF or MAP2K1 mutation and anatomic site, unifocal versus multifocal presentation, or clinical outcome.
Collapse
Affiliation(s)
- Khaled Alayed
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030; Department of Pathology, King Saud University, Riyadh, 11461, Saudi Arabia
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Shalini Verma
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - John Galbincea
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - R Craig Cason
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030.
| |
Collapse
|
31
|
Sadeghian-Rizi S, Sakhteman A, Hassanzadeh F. A quantitative structure-activity relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors. Res Pharm Sci 2016; 11:445-453. [PMID: 28003837 PMCID: PMC5168880 DOI: 10.4103/1735-5362.194869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the current study, both ligand-based molecular docking and receptor-based quantitative structure activity relationships (QSAR) modeling were performed on 35 diaryl urea derivative inhibitors of V600EB-RAF. In this QSAR study, a linear (multiple linear regressions) and a nonlinear (partial least squares least squares support vector machine (PLS-LS-SVM)) were used and compared. The predictive quality of the QSAR models was tested for an external set of 31 compounds, randomly chosen out of 35 compounds. The results revealed the more predictive ability of PLS-LS-SVM in analysis of compounds with urea structure. The selected descriptors indicated that size, degree of branching, aromaticity, and polarizability affected the inhibition activity of these inhibitors. Furthermore, molecular docking was carried out to study the binding mode of the compounds. Docking analysis indicated some essential H-bonding and orientations of the molecules in the active site.
Collapse
Affiliation(s)
- Sedighe Sadeghian-Rizi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry and Novel Drug Delivery Systems Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
32
|
The RAF-MEK-ERK pathway: targeting ERK to overcome obstacles to effective cancer therapy. Future Med Chem 2015; 7:269-89. [PMID: 25826360 DOI: 10.4155/fmc.14.143] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Currently, dozens of BRAF inhibitors and MEK inhibitors targeting RAF-MEK-ERK pathway have been introduced into clinical trials for cancer therapy. However, after 6-8 months of initial response, acquired drug resistance among the majority of those treated patients sharply diminished their clinical efficacy. DISCUSSION Important mechanisms responsible for acquired resistance of BRAF inhibitors and MEK inhibitors have been elucidated. Continually, ERK1/2 locates in the critical position and features unique characteristics, such as activating hundreds of substrates, participating in feedback regulation, being catalyzed by MEK specifically and no acquired resistant mutation. CONCLUSION Taking in account the inspiring outcomes of ERK inhibitors in preclinical research, ERK1/2 might be the optimal target to overcome acquired drug resistance in RAF-MEK-ERK pathway.
Collapse
|
33
|
Rubin B, Monticelli H, Redaelli M, Mucignat C, Barollo S, Bertazza L, Mian C, Betterle C, Iacobone M, Fassina A, Boscaro M, Pezzani R, Mantero F. Mitogen-Activated Protein Kinase Pathway: Genetic Analysis of 95 Adrenocortical Tumors. Cancer Invest 2015; 33:526-31. [DOI: 10.3109/07357907.2015.1080832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Martin-Liberal J, Larkin J. Vemurafenib for the treatment of BRAF mutant metastatic melanoma. Future Oncol 2015; 11:579-89. [PMID: 25686114 DOI: 10.2217/fon.14.252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vemurafenib was the first selective BRAF inhibitor licensed in cancer. It is indicated for the treatment of patients affected by advanced melanoma with BRAF V600 mutation. It has shown successful results in terms of efficacy together with a favorable toxicity profile. Other compounds such as the BRAF inhibitor dabrafenib and the immunotherapeutic agent ipilimumab are also approved in the same group of patients. This article reviews the chemistry, pharmacokinetics, pharmacodynamics and clinical development of vemurafenib. Moreover, its efficacy and toxicity are compared with dabrafenib and ipilimumab. A number of trials with vemurafenib alone or in combination with other drugs are also analyzed. These trials will determine the role of vemurafenib in the treatment of BRAF mutant melanoma in forthcoming years.
Collapse
|
35
|
Gruosso T, Garnier C, Abelanet S, Kieffer Y, Lemesre V, Bellanger D, Bieche I, Marangoni E, Sastre-Garau X, Mieulet V, Mechta-Grigoriou F. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun 2015; 6:8583. [PMID: 26456302 PMCID: PMC4633961 DOI: 10.1038/ncomms9583] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/07/2015] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer is a silent disease with a poor prognosis that urgently requires new therapeutic strategies. In low-grade ovarian tumours, mutations in the MAP3K BRAF gene constitutively activate the downstream kinase MEK. Here we demonstrate that an additional MAP3K, MAP3K8 (TPL-2/COT), accumulates in high-grade serous ovarian carcinomas (HGSCs) and is a potential prognostic marker for these tumours. By combining analyses on HGSC patient cohorts, ovarian cancer cells and patient-derived xenografts, we demonstrate that MAP3K8 controls cancer cell proliferation and migration by regulating key players in G1/S transition and adhesion dynamics. In addition, we show that the MEK pathway is the main pathway involved in mediating MAP3K8 function, and that MAP3K8 exhibits a reliable predictive value for the effectiveness of MEK inhibitor treatment. Our data highlight key roles for MAP3K8 in HGSC and indicate that MEK inhibitors could be a useful treatment strategy, in combination with conventional chemotherapy, for this disease.
Collapse
Affiliation(s)
- Tina Gruosso
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Camille Garnier
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Sophie Abelanet
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Vincent Lemesre
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Dorine Bellanger
- Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France.,Genomics and Biology of the Hereditary Breast Cancers, Institut Curie, 26, rue d'Ulm, Paris 75248, France
| | - Ivan Bieche
- Department of Pharmacogenomics, Institut Curie, 26, rue d'Ulm, Paris 75248, France
| | - Elisabetta Marangoni
- Translational Research Department, Laboratory of Precinical Investigation, Institut Curie, 26, rue d'Ulm, Paris 75248, France
| | | | - Virginie Mieulet
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| |
Collapse
|
36
|
Multiple proliferation-survival signalling pathways are simultaneously active in BRAF V600E mutated thyroid carcinomas. Exp Mol Pathol 2015; 99:492-7. [PMID: 26403329 DOI: 10.1016/j.yexmp.2015.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVES BRAF is an oncogene which involves in pathogenesis of many thyroid carcinomas.The aim of our study was to investigate whether the downstream signalling pathway of BRAF and AKT kinase signalling pathways were active in BRAF V600E mutated thyroid carcinoma cells. METHODS Five thyroid (papillary and undifferentiated) carcinoma cell lines and one non-cancer thyroid cell line were screened for their BRAF V600E mutation status by immunofluorescent staining and Western blot. BRAF V600E mutated thyroid carcinoma cell lines were used to test the activation status of both ERK and AKT kinase proteins through immunofluorescent studies and Western blots. RESULTS Expressions of BRAF V600E mutated protein were confirmed in four thyroid (papillary and undifferentiated) carcinoma cell lines. In these cell lines, both active ERK and active AKT kinase proteins were found in BRAF V600E mutated thyroid carcinoma cells by immunofluorescent staining and Western blots experiments. CONCLUSIONS In BRAF V600E mutated thyroid carcinomas, active ERK and active AKT kinase proteins were noted. They are able to stimulate multiple downstream signalling pathways which ultimately result in increased proliferation and survival activities for cancer cells. Therefore, consideration needs to put on multiple targets when deciding molecular target therapies for patients with BRAF V600E mutated thyroid carcinoma.
Collapse
|
37
|
Rahman MA, Salajegheh A, Smith RA, Lam AKY. MicroRNA-126 suppresses proliferation of undifferentiated (BRAF(V600E) and BRAF(WT)) thyroid carcinoma through targeting PIK3R2 gene and repressing PI3K-AKT proliferation-survival signalling pathway. Exp Cell Res 2015; 339:342-50. [PMID: 26384552 DOI: 10.1016/j.yexcr.2015.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/04/2015] [Accepted: 09/13/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The objectives of this study are to investigate the expression of miR-126 and evaluate its effect on proliferation in undifferentiated thyroid carcinoma. METHODS miR-126 expression of undifferentiated thyroid carcinoma cell lines 8505C (BRAF(V600E/V600E)), BHT-101 (BRAF(V600E/WT)) and MB-1 (BRAF(WT/WT)) were quantified with q-PCR. These cell lines were transiently transfected with exogenous miR-126 (mimic). Following transfection, proliferation effects were observed through MTS proliferation assay and colony formation abilities. Immunofluorescence imaging and Western blot assay were also done to check target proteins expression. RESULTS Under-expression (p<0.05) of miR-126 was noted in BRAF(V600E) mutated undifferentiated thyroid carcinoma cells (8505C and BHT-101), but no change in expression was noted in non BRAF(V600E) mutated undifferentiated thyroid carcinoma cells (MB-1). In addition, a 30-50% drop in proliferation ability and a 35-45% reduction in colony formation capability were noticed in miR-126 mimic transfected group when compared to control group. Furthermore, immunofluorescence images showed reduced expression of p85β and p-AKT protein in miR-126 mimic transfected cells when compared to un-transfected cells. Also, Western blot analysis revealed a 34-40% suppression of p85β protein and a 21-53% drop in active AKT kinase (p-AKT) protein in miR-126 mimic transfected group when compared to control group. CONCLUSIONS Expression of miR-126 was down-regulated in BRAF(V600E) mutated undifferentiated thyroid carcinoma. In addition, miR-126 was found to act as proliferation suppressor targeting PIK3R2 gene and reducing p85β (a regulatory subunit of PI3K kinase) protein translation and lower AKT kinase activity. Therefore, miR-126 could be a potential therapeutic tool in the treatment of undifferentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Md Atiqur Rahman
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Ali Salajegheh
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alfred King-yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; Pathology Queensland and Gold Coast University Hospital, Gold Coast, Queensland, Australia.
| |
Collapse
|
38
|
|
39
|
Molecular and immunohistochemical characterization reveals novel BRAF mutations in metanephric adenoma. Am J Surg Pathol 2015; 39:549-57. [PMID: 25602792 DOI: 10.1097/pas.0000000000000377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metanephric adenoma (MA) is a rare benign renal tumor comprised of a neoplastic proliferation of primitive metanephric tubular cells. A previous study identified BRAF V600E mutations in approximately 90% of MA and found that similar BRAF exon 15 mutations are exceedingly rare in other common renal tumors, including renal cell carcinoma and oncocytoma. A recent follow-up study has validated mutation-specific immunohistochemistry (IHC) for detection of BRAF V600E mutations in a small cohort of MA. Here, we extend these findings to a larger, independent cohort of MA, demonstrating an overall 88% sensitivity and 100% specificity for BRAF V600E IHC. In addition, we report 2 cases of MA with novel BRAF exon 15 mutations, including a V600D missense mutation and a compound V600D and K601L missense mutation. Finally, we evaluate BRAF V600E IHC in a large tissue microarray cohort of common renal tumors and find no significant expression in several renal cell carcinoma subtypes. These data support a role for BRAF V600E IHC in diagnostically challenging cases of MA and expand the spectrum of BRAF exon 15 mutations in this uncommon but unique renal neoplasm.
Collapse
|
40
|
In silico identification of novel kinase inhibitors by targeting B-Raf(v660e) from natural products database. J Mol Model 2015; 21:102. [PMID: 25832798 DOI: 10.1007/s00894-015-2647-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/09/2015] [Indexed: 12/14/2022]
Abstract
The Ras/Raf/MEK/ERK (MAPK) signaling pathway has gained much attention from scientific community for therapeutic intervention in the past decades, specifically in oncology. Notably, a most prevalent B-Raf(v600e) mutant in Raf kinase family exhibits elevated kinase activity and results in constitutive activation of the MAPK pathway, thus making it a promising drug target for cancer therapy. Herein, virtual screening is applied to identify its potential inhibitors. Following the 25 ns molecular dynamic (MD) simulations, ZINC38541768, ZINC38541767, and ZINC12496469 are identified as B-Raf(v600e) potential inhibitors in a DFG-in conformation. Furthermore, according to the molecular mechanics/generalized born surface area (MM/GBSA) method, these three small molecules exhibit similar and good binding affinity toward B-Raf(v600e) (-38.76 kcal mol(-1), -42.60 kcal mol(-1), and -39.04 kcal mol(-1)). At the same time, several critical residues, such as I463, V471 in the P-loop, and DFG motif residue D594 within the A-loop, are also well clarified. All these results may not only indicate some future applications of inhibitors targeting B-Raf(v600e), but also benefit B-Raf(v600e) harboring cancer patients.
Collapse
|
41
|
Pillai S, Gopalan V, Smith RA, Lam AKY. Diffuse sclerosing variant of papillary thyroid carcinoma—an update of its clinicopathological features and molecular biology. Crit Rev Oncol Hematol 2015; 94:64-73. [DOI: 10.1016/j.critrevonc.2014.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023] Open
|
42
|
Adeniran AJ, Hui P. Best practice of BRAF V600E mutation testing for the diagnosis and management of thyroid cancers. Expert Rev Endocrinol Metab 2014; 9:571-577. [PMID: 30736195 DOI: 10.1586/17446651.2014.951635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BRAF V600E mutation is the single most common genetic alteration identified in papillary thyroid carcinoma. There is significant association between BRAF V600E mutation and aggressive tumor behavior. BRAF V600E mutation has also been found to be an independent predictor of treatment failure and tumor recurrence even in patients with low-stage disease. Pre-operative BRAF mutation testing of thyroid fine needle aspiration specimens has become a routine clinical practice that enhances the predictability of malignancy in indeterminate fine needle aspiration cytology specimens especially those in the follicular lesion of undetermined significance/atypia of undetermined significance category. In addition to histological evaluation of subsequent core needle biopsy and BRAF immunohistochemistry, an expanded panel of mutation testing including BRAF V600E, NRAS, HRAS, RET/papillary thyroid carcinoma and PAX8/PPARγ rearrangements are currently advocated to further improve the diagnostic predictability in the detection of thyroid carcinomas using cytological specimens.
Collapse
Affiliation(s)
- Adebowale J Adeniran
- a Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, CT 06520, USA
| | | |
Collapse
|
43
|
Vemurafenib Response in 2 Patients With Posttransplant Refractory BRAF V600E–Mutated Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:e161-3. [DOI: 10.1016/j.clml.2014.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/15/2022]
|
44
|
Leprivier G, Sorensen PH. How does oncogene transformation render tumor cells hypersensitive to nutrient deprivation? Bioessays 2014; 36:1082-90. [PMID: 25244326 DOI: 10.1002/bies.201400085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncogene activation leads to cellular transformation by deregulation of biological processes such as proliferation and metabolism. Paradoxically, this can also sensitize cells to nutrient deprivation, potentially representing an Achilles' heel in early stage tumors. The mechanisms underlying this phenotype include loss of energetic and redox homeostasis as a result of metabolic reprogramming, favoring synthesis of macromolecules. Moreover, an emerging mechanism involving the deregulation of mRNA translation elongation through inhibition of eukaryotic elongation factor 2 kinase (eEF2K) is presented. The potential consequences of eEF2K deregulation leading to cell death under nutrient depletion are discussed. Finally, the relevance of eEF2K as a master regulator of the response to nutrient deprivation in vivo, and its potential exploitation for therapeutic targeting of cancers, are elaborated. Overall, a better understanding of the adaptive mechanisms allowing tumors to circumvent oncogene-induced hypersensitivity to nutrient deprivation is a promising avenue for uncovering novel therapeutic targets in cancers.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
45
|
Condelli V, Piscazzi A, Sisinni L, Matassa DS, Maddalena F, Lettini G, Simeon V, Palladino G, Amoroso MR, Trino S, Esposito F, Landriscina M. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors. Cancer Res 2014; 74:6693-704. [PMID: 25239454 DOI: 10.1158/0008-5472.can-14-1331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-M transitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Annamaria Piscazzi
- Clinical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Giuseppe Palladino
- Clinical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Maria Rosaria Amoroso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy. Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Trino
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Matteo Landriscina
- Clinical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
46
|
Fisher KE, Pillai RN, Kudchadkar RR, Rossi MR. Section IV: non-small cell lung cancer and malignant melanoma. Curr Probl Cancer 2014; 38:180-98. [PMID: 25281457 DOI: 10.1016/j.currproblcancer.2014.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Kim YH, Choi SE, Yoon SO, Hong SW. A testing algorithm for detection of the B-type Raf kinase V600E mutation in papillary thyroid carcinoma. Hum Pathol 2014; 45:1483-8. [DOI: 10.1016/j.humpath.2014.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
|
48
|
Rahman M, Salajegheh A, Smith R, Lam AY. BRAF inhibitors: From the laboratory to clinical trials. Crit Rev Oncol Hematol 2014; 90:220-32. [DOI: 10.1016/j.critrevonc.2013.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022] Open
|
49
|
Bachmeyer C, Buffo M, Soyez B. New insights in the pathogenesis of Erdheim-Chester disease: comment on the article by Los Arcos-Bertiz et al. Arthritis Care Res (Hoboken) 2014; 66:967-8. [PMID: 24469999 DOI: 10.1002/acr.22288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claude Bachmeyer
- Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | |
Collapse
|