1
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NP. Synergy Between NK Cells and Monocytes in Potentiating Cardiovascular Disease Risk in Severe COVID-19. Arterioscler Thromb Vasc Biol 2024; 44:e243-e261. [PMID: 38989579 PMCID: PMC11448863 DOI: 10.1161/atvbaha.124.321085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Evidence suggests that COVID-19 predisposes to cardiovascular diseases (CVDs). While monocytes/macrophages play a central role in the immunopathogenesis of atherosclerosis, less is known about their immunopathogenic mechanisms that lead to CVDs during COVID-19. Natural killer (NK) cells, which play an intermediary role during pathologies like atherosclerosis, are dysregulated during COVID-19. Here, we sought to investigate altered immune cells and their associations with CVD risk during severe COVID-19. METHODS We measured plasma biomarkers of CVDs and determined phenotypes of circulating immune subsets using spectral flow cytometry. We compared these between patients with severe COVID-19 (severe, n=31), those who recovered from severe COVID-19 (recovered, n=29), and SARS-CoV-2-uninfected controls (controls, n=17). In vivo observations were supported using in vitro assays to highlight possible mechanistic links between dysregulated immune subsets and biomarkers during and after COVID-19. We performed multidimensional analyses of published single-cell transcriptome data of monocytes and NK cells during severe COVID-19 to substantiate in vivo findings. RESULTS During severe COVID-19, we observed alterations in cardiometabolic biomarkers including oxidized-low-density lipoprotein, which showed decreased levels in severe and recovered groups. Severe patients exhibited dysregulated monocyte subsets, including increased frequencies of proinflammatory intermediate monocytes (also observed in the recovered) and decreased nonclassical monocytes. All identified NK-cell subsets in the severe COVID-19 group displayed increased expression of activation and tissue-resident markers, such as CD69 (cluster of differentiation 69). We observed significant correlations between altered immune subsets and plasma oxidized-low-density lipoprotein levels. In vitro assays revealed increased uptake of oxidized-low-density lipoprotein into monocyte-derived macrophages in the presence of NK cells activated by plasma of patients with severe COVID-19. Transcriptome analyses confirmed enriched proinflammatory responses and lipid dysregulation associated with epigenetic modifications in monocytes and NK cells during severe COVID-19. CONCLUSIONS Our study provides new insights into the involvement of monocytes and NK cells in the increased CVD risk observed during and after COVID-19.
Collapse
Affiliation(s)
- Manuja Gunasena
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Will Mulhern
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Emily Bowman
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Aaren Kettelhut
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Amrendra Kumar
- Department of pathology, College of Medicine, The Ohio State University
| | | | - Dhanuja Kasturiratna
- Department of Mathematics and Statistics, Northern Kentucky University, KY, Highland Heights, KY, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Scott Scrape
- Department of pathology, College of Medicine, The Ohio State University
| | - Sonal R Pannu
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Shan-Lu Liu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Anna Vilgelm
- Department of pathology, College of Medicine, The Ohio State University
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Joseph S Bednash
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Thorsten Demberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nicholas T Funderburg
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Namal P.M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| |
Collapse
|
2
|
Alles M, Gunasena M, Kettelhut A, Ailstock K, Musiime V, Kityo C, Richardson B, Mulhern W, Tamilselvan B, Rubsamen M, Kasturiratna D, Demberg T, Cameron CM, Cameron MJ, Dirajlal-Fargo S, Funderburg NT, Liyanage NPM. Activated NK Cells with Pro-inflammatory Features are Associated with Atherogenesis in Perinatally HIV-Acquired Adolescents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23297580. [PMID: 37986784 PMCID: PMC10659511 DOI: 10.1101/2023.11.06.23297580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Human immunodeficiency virus (HIV) is associated with persistent immune activation and dysfunction in people with HIV despite treatment with antiretroviral therapy (ART). Modulation of the immune system may be driven by: low-level HIV replication, co-pathogens, gut dysbiosis /translocation, altered lipid profiles, and ART toxicities. In addition, perinatally acquired HIV (PHIV) and lifelong ART may alter the development and function of the immune system. Our preliminary data and published literature suggest reprogramming innate immune cells may accelerate aging and increase the risk for future end-organ complications, including cardiovascular disease (CVD). The exact mechanisms, however, are currently unknown. Natural killer (NK) cells are a highly heterogeneous cell population with divergent functions. They play a critical role in HIV transmission and disease progression in adults. Recent studies suggest the important role of NK cells in CVDs; however, little is known about NK cells and their role in HIV-associated cardiovascular risk in PHIV adolescents. Here, we investigated NK cell subsets and their potential role in atherogenesis in PHIV adolescents compared to HIV-negative adolescents in Uganda. Our data suggest, for the first time, that activated NK subsets in PHIV adolescents may contribute to atherogenesis by promoting plasma oxidized low-density lipoprotein (Ox-LDL) uptake by vascular macrophages.
Collapse
|
3
|
Sutoh Y, Komaki S, Yamaji T, Suzuki S, Katagiri R, Sawada N, Ono K, Ohmomo H, Hachiya T, Otsuka-Yamasaki Y, Takashima A, Umekage S, Iwasaki M, Shimizu A. Low MICA Gene Expression Confers an Increased Risk of Graves' Disease: A Mendelian Randomization Study. Thyroid 2022; 32:188-195. [PMID: 34861792 DOI: 10.1089/thy.2021.0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Expression of natural killer group 2 member D (NKG2D) ligand (NKG2DL) plays a major role as a "danger signal" on stressed cells to promote removal of the latter by NKG2D-expressing cytotoxic lymphocytes. NKG2DL expression has been found in peripheral immune cells as well, such as in macrophages; however, the effect of this expression is yet to be determined. Methods: We determined instrumental variables (IVs; R2 <0.01 in linkage disequilibrium), explaining the major variance in major histocompatibility complex class I chain-related protein A (MICA) and B (MICB) gene expression levels from the expression-quantitative trait locus (eQTL) of NKG2DLs based on the RNA-seq analysis of peripheral blood mononuclear cells (PBMCs) from 381 Japanese. Simultaneously, the target outcomes were filtered by PheWAS from 58 health risks, using a community-based cohort study composed of 44,739 Japanese residents. Finally, we estimated the causal effect of gene expression levels on the outcomes using the Mendelian randomization approach. Results: We determined nine and four IVs, explaining 87.6% and 33.0% of MICA and MICB gene expression levels, respectively. In the association test, we identified 10 or 13 significant outcomes associated with the MICA or MICB eQTLs, respectively, as well as the causal effect of MICA expression on Graves' disease (GD) (p = 4.2 × 10-3; odds ratio per 1 S.D. difference in the expression: 0.983 [confidence interval: 0.971-0.995]), using the weighted median estimator, without significant pleiotropy (p > 0.05), and the results were consistent across the sensitivity analyses. Conclusions: Our study provide novel evidence associating NKG2DL expression with GD, an autoimmune thyroiditis; direction of the effect indicated the immunoregulatory role of MICA expression in PBMCs, suggesting the importance of further functional assays in inflammatory diseases.
Collapse
Affiliation(s)
- Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shiori Suzuki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
- Division of Cancer Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Ryoko Katagiri
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Kanako Ono
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Akira Takashima
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - So Umekage
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
| | - Motoki Iwasaki
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba, Japan
- Biomedical Laboratory Sciences, Institute of Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
4
|
MiR-520b inhibits endothelial activation by targeting NF-κB p65-VCAM1 axis. Biochem Pharmacol 2021; 188:114540. [PMID: 33819467 DOI: 10.1016/j.bcp.2021.114540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
MiR-520b belongs to the miR-373/520 family, is expressed only in human and nonhuman primates. Previous reports indicated that the expression of miR-520b was repressed in human atherosclerotic plaque tissue compared with healthy vessels. However, the role of miR-520b in coronary artery disease still remains to be uncovered. In this study, we demonstrated that endothelial cells (ECs) in human atherosclerotic plaques expressed miR-520b and aimed to elucidate the impact of miR-520b on EC activation and inflammatory response. To determine the potential targets of miR-520b, we performed RNA-seq analysis by transfecting miR-520b mimics in ECs. The quantitative real-time PCR (qPCR) validation suggested that miR-520b over-expression reduced pro-inflammatory gene expression (e.g. ICAM1, VCAM1, SELE) while the inhibition of miR-520b induced their expression. By combining bioinformatics prediction and functional assays, we identified that RELA (Nuclear Factor-κB (NF-κB) Transcription Factor P65) was a direct target of miR-520b. Moreover, miR-520b mimics attenuated monocyte adhesion and monocyte trans-endothelial migration (the initial steps of atherosclerotic formation) in response to lipopolysaccharides (LPS) stimulation. Re-expression of a non-miR-targetable version of p65 could rescue the reduced monocyte cell attachment, suggesting that this process is NF-κB p65 dependent. MiR-520b reduced the abundance of NF-κB p65 in cytoplasmic fractions without corresponding increase in nuclear fractions, indicating that this regulation is independent of p65 translocation process. MiR-520b mimics attenuated the activity of VCAM-1 promoter, whereas miR-520b inhibitor activated its activity. However, miR-520b inhibitor had no effect on promoter activity containing the mutated NF-κB p65 binding sites, strongly demonstrating that the impact of miR-520b on VCAM1 gene is mediated by NF-κB p65. Thus, we concluded that miR-520b suppressed EC inflammation and the cross-talk between monocytes and ECs by down-regulating NF-κB p65-ICAM1/VCAM1 axis and might serve as a potential therapeutic target for EC dysfunction and atherosclerosis.
Collapse
|
5
|
Maurer S, Ferrari de Andrade L. NK Cell Interaction With Platelets and Myeloid Cells in the Tumor Milieu. Front Immunol 2020; 11:608849. [PMID: 33424862 PMCID: PMC7785787 DOI: 10.3389/fimmu.2020.608849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells recognize and kill tumor cells via germ-line encoded receptors and polarized degranulation of cytotoxic molecules, respectively. As such, NK cells help to inhibit the development of cancers. The activating receptor NKG2D induces NK cell-mediated killing of metastasizing tumor cells by recognition of the stress-induced ligands MICA, MICB, and ULBP1-6. However, platelets enable escape from this immune surveillance mechanism by obstructing the interactions between NK cells and tumor cells or by cleaving the stress-induced ligands. It is also being increasingly appreciated that NK cells play additional roles in cancer immunity, including chemokine-mediated recruitment of antigen presenting cells in the tumor microenvironment that is followed by generation of adaptive immunity. However, the NK cell interplays with dendritic cells, and macrophages are extremely complex and involve molecular interactions via NKG2D and cytokine receptors. Specifically, NKG2D-mediated chronic interaction between NK cells and tumor-infiltrating macrophages causes immune suppression by differentiating NK cells toward a dysfunctional state. Here we discuss the underlying mechanisms of NK cell control by platelets and myeloid cells with focus on NKG2D and its ligands, and provide a timely perspective on how to harness these pathways with novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Stefanie Maurer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lucas Ferrari de Andrade
- Precision Immunology Institute, Department of Oncological Sciences, and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Association of Major Histocompatibility Complex Class I Related Chain A/B Positive Microparticles with Acute Myocardial Infarction and Disease Severity. Diagnostics (Basel) 2020; 10:diagnostics10100766. [PMID: 33003303 PMCID: PMC7656305 DOI: 10.3390/diagnostics10100766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Various cell types undergo activation and stress during atherosclerosis resulting in the development of acute myocardial infarction (AMI) in coronary artery disease (CAD). Major histocompatibility complex class I related chain A and B (MICA/B) can be expressed on the surface of activated and stressed cells and released into blood circulation in several forms including microparticles (MICA/B+ MPs) from various cell types. We aimed to investigate the association of these MICA/B+ MPs with the presence of AMI. Fifty-one AMI and 46 age-matched control subjects were recruited. Methods: Levels of MICA/B+ MPs derived from various parent cells including endothelial cells, platelets, monocytes, neutrophils, and T lymphocytes were determined by flow cytometry. Results: The levels and proportion of MICA/B+ MPs from all types of cell origin were significantly increased in AMI patients compared to those of the controls. A multivariate regression model showed an independent association between MICA/B+ MPs and AMI (OR = 11.6; 95% CI = 2.8, 47.3). Interestingly, based on the disease severity, we found that the levels of MICA/B+ MPs were significantly elevated in the ST-segment elevation myocardial infarction (STEMI) compared to the non-STEMI (NSTEMI) patients. Moreover, an independent association of MICA/B+ MPs with the occurrence of STEMI was also demonstrated (OR = 4.1; 95% CI = 1.5, 16.7). Conclusions: These results suggest that MICA/B+ MPs are associated with AMI and disease severity. They may act as mediators contributing to the pathological process of AMI. Alternatively, they are the results of various cell activations contributing to AMI.
Collapse
|
7
|
Bonaccorsi I, Spinelli D, Cantoni C, Barillà C, Pipitò N, De Pasquale C, Oliveri D, Cavaliere R, Carrega P, Benedetto F, Ferlazzo G. Symptomatic Carotid Atherosclerotic Plaques Are Associated With Increased Infiltration of Natural Killer (NK) Cells and Higher Serum Levels of NK Activating Receptor Ligands. Front Immunol 2019; 10:1503. [PMID: 31354703 PMCID: PMC6639781 DOI: 10.3389/fimmu.2019.01503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Abstract
A wide array of immune cells, including lymphocytes, is known to be present and to play a pathogenetic role in atherosclerotic lesions. However, limited information is currently available regarding the presence of Natural Killer (NK) cell subsets within vessel plaque, and more in general, regarding their role in human atherosclerosis. We evaluated the distribution of NK cells in human carotid atherosclerotic plaques, dissecting asymptomatic and symptomatic patients (identified as affected by stroke, transient ischemic attack, or amaurosis fugax within 6 months) with the aim of shedding light on the putative contribution of NK cells to the pathogenic process that leads to plaque instability and subsequent clinical complications. We observed that carotid plaques were consistently infiltrated by NK cells and, among them, CD56brightperforinlow NK cells were abundantly present and displayed different markers of tissue residency (i.e., CD103 CD69 and CD49a). Interestingly, carotid atherosclerotic plaques of symptomatic patients showed a higher content of NK cells and an increased ratio between CD56brightperforinlow NK cells and their CD56dimperforinhigh counterpart. NK cells isolated from plaques of symptomatic patients were also stronger producers of IFN-γ. Analysis of the expression of NK activating receptor ligands (including MICA/B, ULBP-3, and B7-H6) in atherosclerotic carotid plaques revealed that they were abundantly expressed by a HLA-DR+CD11c+ myeloid cell population resident in the plaques. Remarkably, sera of symptomatic patients contained significant higher levels of soluble ligands for NK activating receptors. Our observations indicate that CD56bright NK cells accumulate within human atherosclerotic lesions and suggest a possible contribution of NK cells to the process determining plaque instability.
Collapse
Affiliation(s)
- Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy
| | - Domenico Spinelli
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Barillà
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Narayana Pipitò
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy
| | - Daniela Oliveri
- Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy
| | - Filippo Benedetto
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| |
Collapse
|
8
|
Genetic and phenotypic landscape of the major histocompatibilty complex region in the Japanese population. Nat Genet 2019; 51:470-480. [PMID: 30692682 DOI: 10.1038/s41588-018-0336-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/13/2018] [Indexed: 01/20/2023]
Abstract
To perform detailed fine-mapping of the major-histocompatibility-complex region, we conducted next-generation sequencing (NGS)-based typing of the 33 human leukocyte antigen (HLA) genes in 1,120 individuals of Japanese ancestry, providing a high-resolution allele catalog and linkage-disequilibrium structure of both classical and nonclassical HLA genes. Together with population-specific deep-whole-genome-sequencing data (n = 1,276), we conducted NGS-based HLA, single-nucleotide-variant and indel imputation of large-scale genome-wide-association-study data from 166,190 Japanese individuals. A phenome-wide association study assessing 106 clinical phenotypes identified abundant, significant genotype-phenotype associations across 52 phenotypes. Fine-mapping highlighted multiple association patterns conferring independent risks from classical HLA genes. Region-wide heritability estimates and genetic-correlation network analysis elucidated the polygenic architecture shared across the phenotypes.
Collapse
|
9
|
Stojanovic A, Correia MP, Cerwenka A. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Front Immunol 2018; 9:827. [PMID: 29740438 PMCID: PMC5924773 DOI: 10.3389/fimmu.2018.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Poh S, Chelvam V, Ayala-López W, Putt KS, Low PS. Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1033-1043. [DOI: 10.1016/j.nano.2018.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/18/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
|
11
|
Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018; 359:1537-1542. [PMID: 29599246 PMCID: PMC6626532 DOI: 10.1126/science.aao0505] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/18/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Abstract
MICA and MICB are expressed by many human cancers as a result of cellular stress, and can tag cells for elimination by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. However, tumors evade this immune recognition pathway through proteolytic shedding of MICA and MICB proteins. We rationally designed antibodies targeting the MICA α3 domain, the site of proteolytic shedding, and found that these antibodies prevented loss of cell surface MICA and MICB by human cancer cells. These antibodies inhibited tumor growth in multiple fully immunocompetent mouse models and reduced human melanoma metastases in a humanized mouse model. Antitumor immunity was mediated mainly by natural killer (NK) cells through activation of NKG2D and CD16 Fc receptors. This approach prevents the loss of important immunostimulatory ligands by human cancers and reactivates antitumor immunity.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/immunology
- Antibodies, Blocking/therapeutic use
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunocompetence
- Killer Cells, Natural/immunology
- Ligands
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- Neoplasm Metastasis
- Protein Domains/immunology
- Receptors, IgG/immunology
Collapse
Affiliation(s)
- Lucas Ferrari de Andrade
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Rong En Tay
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Deng Pan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Yoshinaga Ito
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Soumya Badrinath
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Daphne Tsoucas
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Bettina Franz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Kenneth F May
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Christopher J Harvey
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sebastian Kobold
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jason W Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Charles Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
12
|
Trembath AP, Markiewicz MA. More than Decoration: Roles for Natural Killer Group 2 Member D Ligand Expression by Immune Cells. Front Immunol 2018; 9:231. [PMID: 29483917 PMCID: PMC5816059 DOI: 10.3389/fimmu.2018.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
The activating immune receptor natural killer group 2 member D (NKG2D), which is expressed by natural killer cells and T cell subsets, recognizes a number of ligands expressed by "stressed" or damaged cells. NKG2D has been extensively studied for its role in tumor immunosurveillance and antiviral immunity. To date, the majority of studies have focused on NKG2D-mediated killing of target cells expressing NKG2D ligands. However, with a number of reports describing expression of NKG2D ligands by cells that are not generally considered stressed, it is becoming clear that some healthy cells also express NKG2D ligands. Expression of these ligands by cells within the skin, intestinal epithelium, and the immune system suggests other immune functions for NKG2D ligand expression in addition to its canonical role as a "kill me" signal. How NKG2D ligands function in this capacity is just now starting to be unraveled. In this review, we examine the expression of NKG2D ligands by immune cells and discuss current literature describing the effects of this expression on immunity and immune regulation.
Collapse
Affiliation(s)
- Andrew P. Trembath
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Mary A. Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
13
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
14
|
Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice. Sci Rep 2016; 6:23912. [PMID: 27045575 PMCID: PMC4820703 DOI: 10.1038/srep23912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/15/2016] [Indexed: 01/09/2023] Open
Abstract
Sirt6 is a member of the class III histone deacetylase family which is associated with aging and longevity. Sirt6 deficient mice show an aging-like phenotype, while male transgenic mice of Sirt6 show increased longevity. Sirt6 acts as a tumor suppressor and deficiency of Sirt6 leads to cardiac hypertrophy and heart failure. Whether Sirt6 is involved in atherosclerosis development, the major cause of cardiovascular diseases, is unknown. We found that the expression of Sirt6 is lower in human atherosclerotic plaques than that in controls. When Sirt6(+/-)ApoE(-/-) and ApoE(-/-) mice are fed with high fat diet for 16 weeks, Sirt6(+/-)ApoE(-/-) mice show increased plaque fromation and exhibit feature of plaque instability. Furthermore, Sirt6 downregulation increases expression of NKG2D ligands, which leads to increased cytokine expression. Blocking NKG2D ligand almost completely blocks this effect. Mechanistically, Sirt6 binds to promoters of NKG2D ligand genes and regulates the H3K9 and H3K56 acetylation levels.
Collapse
|
15
|
Natural killer cells in the innate immunity network of atherosclerosis. Immunol Lett 2015; 168:51-7. [DOI: 10.1016/j.imlet.2015.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
|