1
|
Dugan MP, Maiya R, Fleischer C, Bajo M, Snyder AE, Koduri A, Srinivasan S, Roberto M, Messing RO. Brain-specific serine/threonine-protein kinase 1 is a substrate of protein kinase C epsilon involved in sex-specific ethanol and anxiety phenotypes. Addict Biol 2024; 29:e13388. [PMID: 38497285 PMCID: PMC10950061 DOI: 10.1111/adb.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Protein kinase C epsilon (PKCε) regulates behavioural responses to ethanol and plays a role in anxiety-like behaviour, but knowledge is limited on downstream substrates of PKCε that contribute to these behaviours. We recently identified brain-specific serine/threonine-protein kinase 1 (BRSK1) as a substrate of PKCε. Here, we test the hypothesis that BRSK1 mediates responses to ethanol and anxiety-like behaviours that are also PKCε dependent. We used in vitro kinase assays to further validate BRSK1 as a substrate of PKCε and used Brsk1-/- mice to assess the role of BRSK1 in ethanol- and anxiety-related behaviours and in physiological responses to ethanol. We found that BRSK1 is phosphorylated by PKCε at a residue identified in a chemical genetic screen of PKCε substrates in mouse brain. Like Prkce-/- mice, male and female Brsk1-/- mice were more sensitive than wild-type to the acute sedative-hypnotic effect of alcohol. Unlike Prkce-/- mice, Brsk1-/- mice responded like wild-type to ataxic doses of ethanol. Although in Prkce-/- mice ethanol consumption and reward are reduced in both sexes, they were reduced only in female Brsk1-/- mice. Ex vivo slice electrophysiology revealed that ethanol-induced facilitation of GABA release in the central amygdala was absent in male Brsk1-/- mice similar to findings in male Prkce-/- mice. Collectively, these results indicate that BRSK1 is a target of PKCε that mediates some PKCε-dependent responses to ethanol in a sex-specific manner and plays a role distinct from PKCε in anxiety-like behaviour.
Collapse
Affiliation(s)
- Michael P. Dugan
- Waggoner Center for Alcohol and Addiction ResearchDepartment of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - Rajani Maiya
- Waggoner Center for Alcohol and Addiction ResearchDepartment of NeuroscienceThe University of Texas at AustinAustinTexasUSA
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Caleb Fleischer
- Waggoner Center for Alcohol and Addiction ResearchDepartment of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - Michal Bajo
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Angela E. Snyder
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ashwin Koduri
- Waggoner Center for Alcohol and Addiction ResearchDepartment of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - Sathvik Srinivasan
- Waggoner Center for Alcohol and Addiction ResearchDepartment of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| | - Marisa Roberto
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction ResearchDepartment of NeuroscienceThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
2
|
Liu G, Li L, Shang D, Zhou C, Zhang C. BRSK1 confers cisplatin resistance in cervical cancer cells via regulation of mitochondrial respiration. J Cancer Res Clin Oncol 2023; 149:8803-8815. [PMID: 37140697 DOI: 10.1007/s00432-023-04821-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Although cisplatin-containing chemotherapy has been utilized as a front-line treatment for cervical cancer, intrinsic and acquired resistance of cisplatin remains a major hurdle for the durable and curative therapeutic response. We thus aim to identify novel regulator of cisplatin resistance in cervical cancer cells. METHODS Real-time PCR and western blotting analysis were employed to determine the expression of BRSK1 in normal and cisplatin-resistant cells. Sulforhodamine B assay was conducted to assess the sensitivity of cervical cancer cells to cisplatin. Seahorse Cell Mito Stress Test assay was utilized to evaluate the mitochondrial respiration in cervical cancer cells. RESULTS BRSK1 expression was upregulated in cisplatin-treated cervical cancer patient tumors and cell lines compared with untreated tumors and cell lines. Depletion of BRSK1 significantly enhanced the sensitivity of both normal and cisplatin-resistant cervical cancer cells to cisplatin treatment. Moreover, BRSK1-mediated regulation of cisplatin sensitivity is conducted by a subpopulation of BRSK1 residing in the mitochondria of cervical cancer cells and is dependent on its kinase enzymatic activity. Mechanistically, BRSK1 confers cisplatin resistance via the regulation of mitochondrial respiration. Importantly, treatment with mitochondrial inhibitor in cervical cancer cells phenocopied the BRSK1 depletion-mediated mitochondria dysfunction and cisplatin sensitization. Of note, we observed that high BRSK1 expression is correlated with poor prognosis in cisplatin-treated cervical cancer patients. CONCLUSION Our study defines BRSK1 as a novel regulator of cisplatin sensitivity, identifying that targeting BRSK1-regulated mitochondrial respiration could be a useful approach for enhancing the efficacy of cisplatin-based chemotherapy in cervical cancer patients.
Collapse
Affiliation(s)
- Guo Liu
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People's Republic of China
| | - Li Li
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People's Republic of China
| | - Dandan Shang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People's Republic of China
| | - Chao Zhou
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People's Republic of China.
| | - Chuanhou Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People's Republic of China.
| |
Collapse
|
3
|
Nguyen K, Hebert K, McConnell E, Cullen N, Cheng T, Awoyode S, Martin E, Chen W, Wu T, Alahari SK, Izadpanah R, Collins-Burow BM, Lee SB, Drewry DH, Burow ME. LKB1 Signaling and Patient Survival Outcomes in Hepatocellular Carcinoma. Pharmacol Res 2023; 192:106757. [PMID: 37023992 DOI: 10.1016/j.phrs.2023.106757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The liver is a major organ that is involved in essential biological functions such as digestion, nutrient storage, and detoxification. Furthermore, it is one of the most metabolically active organs with active roles in regulating carbohydrate, protein, and lipid metabolism. Hepatocellular carcinoma is a cancer of the liver that is associated in settings of chronic inflammation such as viral hepatitis, repeated toxin exposure, and fatty liver disease. Furthermore, liver cancer is the most common cause of death associated with cirrhosis and is the 3rd leading cause of global cancer deaths. LKB1 signaling has been demonstrated to play a role in regulating cellular metabolism under normal and nutrient deficient conditions. Furthermore, LKB1 signaling has been found to be involved in many cancers with most reports identifying LKB1 to have a tumor suppressive role. In this review, we use the KMPlotter database to correlate RNA levels of LKB1 signaling genes and hepatocellular carcinoma patient survival outcomes with the hopes of identifying potential biomarkers clinical usage. Based on our results STRADß, CAB39L, AMPKα, MARK2, SIK1, SIK2, BRSK1, BRSK2, and SNRK expression has a statistically significant impact on patient survival.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Katherine Hebert
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Emily McConnell
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicole Cullen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Cheng
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Susanna Awoyode
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Martin
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, USA
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Sean B Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - David H Drewry
- UNC Eshelman School of Pharmacy and UNC Lineberger Comprehensive Cancer Center, Chemical Biology and Medicinal Chemistry Division, SGC-UNC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
AMPKα-like proteins as LKB1 downstream targets in cell physiology and cancer. J Mol Med (Berl) 2021; 99:651-662. [PMID: 33661342 DOI: 10.1007/s00109-021-02040-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
One of the key events in cancer development is the ability of tumor cells to overcome nutrient deprivation and hypoxia. Among proteins performing metabolic adaptation to the various cellular nutrient conditions, liver kinase B 1 (LKB1) and its main downstream target adenosine monophosphate (AMP)-activated protein kinase α (AMPKα) are important sensors of energy requirements within the cell. Although LKB1 was originally described as a tumor suppressor, given its role in metabolism, it potentially acts as a double-edged sword. AMPKα, a master regulator of cell energy demands, is activated when ATP level drops under a certain threshold, responding accordingly through its downstream targets. Twelve downstream kinase targets of LKB1 have been described as AMPKα-like proteins. This group is comprised of novel (nua) kinase family (NUAK) kinases (NUAK1 and 2) linked to cell cycle progression and ultraviolet (UV)-damage; microtubule affinity regulating kinases (MARKs) (MARK1, MARK2, MARK3, and MARK4) that are involved in cell polarity; salt inducible kinases (SIK) (SIK1, SIK2, also known as Qin-induced kinase or QIK and SIK3) that are implicated in cell metabolism and adipose tissue development and mitotic regulation; maternal embryonic leuzine zipper kinase (MELK) that regulate oocyte maturation; and finally brain selective kinases (BRSKs) (BRSK1 and 2), which have been mainly characterized in the brain due to their role in neuronal polarization. Thus, many efforts have been made in order to harness LKB1 kinase and its downstream targets as a possible therapeutic hub in tumor development and propagation. In this review, we describe LKB1 and its downstream target AMPK summarize major functions of various AMPK-like proteins, while focusing on biological functions of BRSK1 and 2 in different models.
Collapse
|
5
|
Shi D, Mu S, Hu B, Zhang S, Liu J, Zhang Z, Shao Z. Prognostic role of c-Jun activation domain-binding protein-1 in cancer: A systematic review and meta-analysis. J Cell Mol Med 2021; 25:2750-2763. [PMID: 33550701 PMCID: PMC7957274 DOI: 10.1111/jcmm.16334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
c-Jun activation domain-binding protein-1 (Jab1) is aberrantly overexpressed in multiple cancers and plays an oncogenic role in cancer progression. We examined the association between Jab1 expression and prognosis in patients with cancer by conducting a meta-analysis. A comprehensive search strategy was performed using the PubMed, Web of Science, Ovid and EMBASE in July 2020. Eligible studies were enrolled according to definite criteria. Twenty-seven studies involving 2609 patients were enrolled in this meta-analysis. A significant association between high Jab1 expression and poor overall survival (pooled hazard ratio [HR] 2.344, 95% confidence interval [CI]: 2.037-2.696) was observed. Subgroup analyses of the type of cancer, sample size, follow-up period, Jab1 detection method and preoperative treatment did not alter the significance. On pooling data from Cox multivariate analyses, high Jab1 expression was found to be an independent prognostic indicator for overall survival. In addition, high Jab1 expression was found to be associated with advanced clinicopathological features such as clinical stage, lymphatic metastasis, histological grade and distant metastasis in cancers. Our meta-analysis is the first to demonstrate that high Jab1 expression may be a promising indicator of poor prognosis and has an independent prognostic value for overall survival in patients with cancer.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shidai Mu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
7
|
Ponzio G, Rezzonico R, Bourget I, Allan R, Nottet N, Popa A, Magnone V, Rios G, Mari B, Barbry P. A new long noncoding RNA (lncRNA) is induced in cutaneous squamous cell carcinoma and down-regulates several anticancer and cell differentiation genes in mouse. J Biol Chem 2017; 292:12483-12495. [PMID: 28596382 DOI: 10.1074/jbc.m117.776260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Indexed: 01/17/2023] Open
Abstract
Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development.
Collapse
Affiliation(s)
- Gilles Ponzio
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and.
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Isabelle Bourget
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, 06000 Nice, France
| | - Richard Allan
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Nicolas Nottet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Alexandra Popa
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Virginie Magnone
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Géraldine Rios
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Bernard Mari
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France and
| |
Collapse
|
8
|
Momcilovic M, Shackelford DB. Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Br J Cancer 2015; 113:574-84. [PMID: 26196184 PMCID: PMC4647688 DOI: 10.1038/bjc.2015.261] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022] Open
Abstract
The LKB1 tumour suppressor is a serine/threonine kinase that functions as master regulator of cell growth, metabolism, survival and polarity. LKB1 is frequently mutated in human cancers and research spanning the last two decades have begun decoding the cellular pathways deregulated following LKB1 inactivation. This work has led to the identification of vulnerabilities present in LKB1-deficient tumour cells. Pre-clinical studies have now identified therapeutic strategies targeting this subset of tumours that promise to benefit this large patient population harbouring LKB1 mutations. Here, we review the current efforts that are underway to translate pre-clinical discovery of therapeutic strategies targeting LKB1 mutant cancers into clinical practice.
Collapse
Affiliation(s)
- M Momcilovic
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - D B Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|