1
|
Shibato J, Takenoya F, Kimura A, Yamashita M, Hirako S, Rakwal R, Shioda S. DNA Microarray and Bioinformatic Analysis Reveals the Potential of Whale Oil in Enhancing Hair Growth in a C57BL/6 Mice Dorsal Skin Model. Genes (Basel) 2024; 15:627. [PMID: 38790256 PMCID: PMC11121295 DOI: 10.3390/genes15050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.
Collapse
Affiliation(s)
- Junko Shibato
- Department of Functional Morphology, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama-shi 244-0806, Kanagawa, Japan;
| | - Fumiko Takenoya
- Department of Sport Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (F.T.); (A.K.); (M.Y.)
| | - Ai Kimura
- Department of Sport Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (F.T.); (A.K.); (M.Y.)
| | - Michio Yamashita
- Department of Sport Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (F.T.); (A.K.); (M.Y.)
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama-shi 339-8539, Saitama, Japan;
| | - Randeep Rakwal
- Institute of Health and Sport Sciences (TAIIKU), Global Sport Innovation, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi 305-8574, Ibaraki, Japan;
| | - Seiji Shioda
- Department of Functional Morphology, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama-shi 244-0806, Kanagawa, Japan;
| |
Collapse
|
2
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Rice RH, Durbin-Johnson BP, Mann SM, Salemi M, Urayama S, Rocke DM, Phinney BS, Sundberg JP. Corneocyte proteomics: Applications to skin biology and dermatology. Exp Dermatol 2018; 27:931-938. [PMID: 30033667 PMCID: PMC6415749 DOI: 10.1111/exd.13756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Advances in mass spectrometry-based proteomics now permit analysis of complex cellular structures. Application to epidermis and its appendages (nail plate, hair shaft) has revealed a wealth of information about their protein profiles. The results confirm known site-specific differences in levels of certain keratins and add great depth to our knowledge of site specificity of scores of other proteins, thereby connecting anatomy and pathology. An example is the evident overlap in protein profiles of hair shaft and nail plate, helping rationalize their sharing of certain dystrophic syndromes distinct from epidermis. In addition, interindividual differences in protein level are manifest as would be expected. This approach permits characterization of altered profiles as a result of disease, where the magnitude of perturbation can be quantified and monitored during treatment. Proteomic analysis has also clarified the nature of the isopeptide cross-linked residual insoluble material after vigorous extraction with protein denaturants, nearly intractable to analysis without fragmentation. These structures, including the cross-linked envelope of epidermal corneocytes, are comprised of hundreds of protein constituents, evidence for strengthening the terminal structure complementary to disulphide bonding. Along with other developing technologies, proteomic analysis is anticipated to find use in disease risk stratification, detection, diagnosis and prognosis after the discovery phase and clinical validation.
Collapse
Affiliation(s)
- Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, CA
| | - Blythe P. Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA
| | - Selena M. Mann
- Forensic Science Program, University of California, Davis, CA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA
| | - Shiro Urayama
- Division of Gastroenterology & Hepatology, University of California, Davis, CA
| | - David M. Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA
| | | | | |
Collapse
|
4
|
Suh M, Proctor D, Chappell G, Rager J, Thompson C, Borghoff S, Finch L, Ellis-Hutchings R, Wiench K. A review of the genotoxic, mutagenic, and carcinogenic potentials of several lower acrylates. Toxicology 2018; 402-403:50-67. [PMID: 29689363 DOI: 10.1016/j.tox.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/28/2018] [Accepted: 04/19/2018] [Indexed: 01/29/2023]
Abstract
Lower alkyl acrylate monomers include methyl-, ethyl-, n-butyl-, and 2-ethylhexyl acrylate. These acrylates are used in the manufacture of acrylic polymers and copolymers for plastics, food packaging, adhesives, and cosmetic formulations. Although there is limited potential for human environmental exposure, occupational exposure can occur via inhalation and dermal contact. Recently, new genotoxicity data have been generated, along with in silico and in vitro read-cross analyses, for these acrylates. The availability of high-throughput screening (HTS) data through the ToxCast™/Tox21 databases allows for consideration of computational toxicology and organization of these data according to the ten key characteristics of carcinogens. Therefore, we conducted a comprehensive review to evaluate the mechanistic, toxicokinetic, animal, and human data, including HTS data, for characterizing the potential carcinogenicity, mutagenicity, and genotoxicity of these acrylates. Toxicokinetic data demonstrate that these acrylates are metabolized rapidly by carboxylesterase hydrolysis and conjugation with glutathione. HTS data demonstrated an overall lack of bioactivity in cancer-related pathways. Overall, the genotoxicity and mutagenicity data support a cytotoxic, non-genotoxic mechanism for these acrylates. Cancer bioassay studies conducted by the oral, dermal, and inhalation routes in animal models with these acrylates did not show any increase in tumor incidence, with two exceptions. At high doses, and secondary to chronic site-of-contact irritation and corrosion, rodent forestomach tumors were induced by oral gavage dosing with ethyl acrylate, and skin tumors were observed following chronic dermal dosing with 2-ethylhexyl acrylate in C3H/HeJ inbred mice (a strain with deficiencies in wound healing), but not in the outbred NMRI strain. For both dermal and forestomach cancers, tumorigenesis is secondary to high doses and long-term tissue damage, shown to be reversible. With evidence that these chemicals are not genotoxic, and that they cause forestomach and dermal tumors through chronic irritation and regenerative proliferation mechanisms, these acrylates are unlikely to pose a human cancer hazard.
Collapse
Affiliation(s)
- Mina Suh
- ToxStrategies, Inc., Mission Viejo, CA 92692, United States
| | | | | | - Julia Rager
- ToxStrategies, Inc., Austin, TX 78759, United States
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Alopecia areata is an autoimmune disorder characterized by transient, non-scarring hair loss and preservation of the hair follicle. Hair loss can take many forms ranging from loss in well-defined patches to diffuse or total hair loss, which can affect all hair-bearing sites. Patchy alopecia areata affecting the scalp is the most common type. Alopecia areata affects nearly 2% of the general population at some point during their lifetime. Skin biopsies of affected skin show a lymphocytic infiltrate in and around the bulb or the lower part of the hair follicle in the anagen (hair growth) phase. A breakdown of immune privilege of the hair follicle is thought to be an important driver of alopecia areata. Genetic studies in patients and mouse models have shown that alopecia areata is a complex, polygenic disease. Several genetic susceptibility loci were identified to be associated with signalling pathways that are important to hair follicle cycling and development. Alopecia areata is usually diagnosed based on clinical manifestations, but dermoscopy and histopathology can be helpful. Alopecia areata is difficult to manage medically, but recent advances in understanding the molecular mechanisms have revealed new treatments and the possibility of remission in the near future.
Collapse
Affiliation(s)
- C Herbert Pratt
- Department of Genetic Resource Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Angela M Christiano
- Departments of Dermatology and Genetics &Development, Columbia University, New York, New York, USA
| | - John P Sundberg
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Research and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609-1500, USA
| |
Collapse
|
6
|
Sundberg JP, Dadras SS, Silva KA, Kennedy VE, Murray SA, Denegre J, Schofield PN, King LE, Wiles M, Pratt CH. Excavating the Genome: Large-Scale Mutagenesis Screening for the Discovery of New Mouse Models. J Investig Dermatol Symp Proc 2015; 17:27-9. [PMID: 26551941 PMCID: PMC4734626 DOI: 10.1038/jidsymp.2015.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Technology now exists for rapid screening of mutated laboratory mice to identify phenotypes associated with specific genetic mutations. Large repositories exist for spontaneous mutants and those induced by chemical mutagenesis, many of which have never been fully studied or comprehensively evaluated. To supplement these resources, a variety of techniques have been consolidated in an international effort to create mutations in all known protein coding genes in the mouse. With targeted embryonic stem cell lines now available for almost all protein coding genes and more recently CRISPR/Cas9 technology, large-scale efforts are underway to create further novel mutant mouse strains and to characterize their phenotypes. However, accurate diagnosis of skin, hair, and nail diseases still relies on careful gross and histological analysis, and while not automated to the level of the physiological phenotyping, histopathology still provides the most direct and accurate diagnosis and correlation with human diseases. As a result of these efforts, many new mouse dermatological disease models are being characterized and developed.
Collapse
Affiliation(s)
- John P. Sundberg
- Department of Research and Development, The Jackson Laboratory, Bar Harbor, ME
- Division of Dermatology, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Soheil S. Dadras
- Departments of Dermatology and Anatomic Pathology, University of Connecticut, Farmington, CT
| | - Kathleen A. Silva
- Department of Research and Development, The Jackson Laboratory, Bar Harbor, ME
| | - Victoria E. Kennedy
- Department of Research and Development, The Jackson Laboratory, Bar Harbor, ME
| | - Stephen A. Murray
- Department of Genetic Resources Science, The Jackson Laboratory, Bar Harbor, ME
| | - James Denegre
- Department of Genetic Resources Science, The Jackson Laboratory, Bar Harbor, ME
| | - Paul N. Schofield
- Department of Research and Development, The Jackson Laboratory, Bar Harbor, ME
- Dept of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lloyd E. King
- Division of Dermatology, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Michael Wiles
- Department of Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, ME
| | - C. Herbert Pratt
- Department of Genetic Resources Science, The Jackson Laboratory, Bar Harbor, ME
| |
Collapse
|