1
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
2
|
Wang K, Yao D, Li Y, Li M, Zeng W, Liao Z, Chen E, Lu S, Su K, Che Z, Liang Y, Wang P, Huang L. TAK-715 alleviated IL-1β-induced apoptosis and ECM degradation in nucleus pulposus cells and attenuated intervertebral disc degeneration ex vivo and in vivo. Arthritis Res Ther 2023; 25:45. [PMID: 36945021 PMCID: PMC10029231 DOI: 10.1186/s13075-023-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is one of the most common disorders related to the spine. Inflammation, apoptosis and extracellular matrix (ECM) degradation contribute to disc degeneration in nucleus pulposus cells (NPCs). This study focused on the role and mechanism of the p38 inhibitor TAK-715 in intervertebral disc degeneration. METHODS NPCs were treated with IL-1β to mimic apoptosis, followed by the addition of TAK-715. It was determined that apoptosis, inflammatory mediators (COX-2), inflammatory cytokines (HMGB1), and ECM components (collagen II, MMP9, ADAMTS5, and MMP3) existed in NPCs. In addition, the p38MAPK signaling pathways were examined. The role of TAK-715 in vivo was determined by acupuncture-induced intervertebral disc degeneration. Following an intradiscal injection of TAK-715, MRI and a histopathological analysis were conducted to assess the degree of degeneration. RESULTS IL-1β-induced apoptosis was alleviated by TAK-715 in vitro, and antiapoptotic proteins were upregulated. Furthermore, TAK-715 blocked IL-1β-induced inflammatory mediator production (COX-2) and inflammatory cytokine production (HMGB1) and degraded the ECM (collagen II, MMP9, ADAMTS5, and MMP3). By inhibiting the phosphorylation of p38, TAK-715 exerted its effects. In a rat tail model, TAK-715 ameliorates puncture-induced disc degeneration based on MRI and histopathology evaluations. CONCLUSION TAK-715 attenuated intervertebral disc degeneration in vitro and in vivo, suggesting that it might be an effective treatment for IDD.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Dengbo Yao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuangyao Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Engming Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Shixin Lu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Kaihui Su
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zhen Che
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.
| | - Lin Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
- Department of Orthopedics, Nangchang First Hospital, Nanchang, China.
| |
Collapse
|
3
|
Teodorczyk-Injeyan JA, Khella H, Injeyan HS. Clinical Biomarker of Sterile Inflammation, HMGB1, in Patients with Chronic Non-Specific Low Back Pain: A Pilot Cross-Sectional Study. Life (Basel) 2023; 13:life13020468. [PMID: 36836824 PMCID: PMC9959829 DOI: 10.3390/life13020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The present study explores whether the inflammatory biomarker of sterile inflammation, high mobility box 1 (HMGB1), contributes to the inflammatory/nociceptive pathophysiology that characterizes chronic non-specific low back pain (LBP). Patients with chronic LBP (N = 10, >3 pain score on a 11-point Visual Analogue Scale, VAS) and asymptomatic participants (N = 12) provided peripheral blood (PB) samples. The proportion of classical CD14++ monocytes within PB leukocytes was determined by flow cytometry. The plasma and extracellular HMGB1 levels in unstimulated adherent cell (AC) cultures were measured using specific immunoassays. HMGB1 localization in ACs was assessed by immunofluorescent staining. The relative gene expression levels of tumor necrosis factor α (TNFα), interleukin-1 beta (IL-1β) and HMGB1 were determined by quantitative polymerase chain reaction (qRT-PCR) in relation to the pain intensity (11-point VAS scores) in patients with LBP. The extracellular release of HMGB1 in the LBP patient AC cultures was significantly elevated (p = 0.001) and accompanied by its relocation into the cytoplasm from the nuclei. The number of CD14++ monocytes in the patients' PB was significantly (p = 0.03) reduced, while the HMGB1 plasma levels remained comparable to those of the controls. The mRNA levels of TNFα, IL-1β and HMGB1 were overexpressed relative to the controls and those of HMGB1 and IL-1β were correlated with the VAS scores at a significant level (p = 0.01-0.03). The results suggest that HMGB1 may play an important role in the pathophysiology of chronic non-specific LBP.
Collapse
Affiliation(s)
- Julita A. Teodorczyk-Injeyan
- Graduate Education and Research Programs, Canadian Memorial Chiropractic College, Toronto, ON M2H 3J1, Canada
- Correspondence: ; Tel.: +1-647-805-2030
| | - Heba Khella
- Department of Clinical Education, Canadian Memorial Chiropractic College, Toronto, ON M2H 3J1, Canada
| | - H. Stephen Injeyan
- Graduate Education and Research Programs, Canadian Memorial Chiropractic College, Toronto, ON M2H 3J1, Canada
| |
Collapse
|
4
|
Wang B, Ji D, Xing W, Li F, Huang Z, Zheng W, Xue J, Zhu Y, Yang X. miR-142-3p and HMGB1 Are Negatively Regulated in Proliferation, Apoptosis, Migration, and Autophagy of Cartilage Endplate Cells. Cartilage 2021; 13:592S-603S. [PMID: 33955243 PMCID: PMC8804737 DOI: 10.1177/19476035211012444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cartilage endplate (CEP) degeneration plays a vital role in the pathological process of intervertebral disc degeneration. It has been previously reported that microRNAs may participate in the occurrence and development of intervertebral disc degeneration through regulating its target genes directly. The regulatory roles of miR-142-3p/HMGB1 in some orthopedic diseases have been determined successively, but there was no report about the degeneration of CEP. Therefore, we aimed to determine the regulation of miR-142-3p/HMGB1 or potential molecular mechanisms on proliferation, apoptosis, migration, and autophagy of CEP cells. METHODS The target gene of miR-142-3p was determined by double luciferase assay. We selected ATDC5 cell lines. CCK-8 method was used to detect cell proliferation. Real-time fluorescence quantitative polymerase chain reaction was used to determine gene expression levels, and western blot analysis was used to determine protein expression levels. We chose flow cytometry to measure cell apoptosis and cell cycle. RESULTS The result of luciferase detection showed that the target gene of miR-142-3p in CEP cells was HMGB1. Knockdown of the miR-142-3p inhibited the expression level of HMGB1, the proliferation and migration of CEP cells, but it promoted apoptosis of CEP cells. In addition, the detection results of the proteins related to apoptosis or autophagy showed that knockdown of miR-142-3p promoted apoptosis and autophagy. CONCLUSION The negative regulation of miR-142-3p/HMGB1 can affect the proliferation, apoptosis, migration, and autophagy of CEP cells. Our results provide a new idea for the targeted treatment of CEP degeneration by inhibiting the expression of HMGB1.
Collapse
Affiliation(s)
- Bo Wang
- School of Graduate, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Demin Ji
- School of Graduate, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wenhua Xing
- Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Feng Li
- Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhi Huang
- Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wenkai Zheng
- Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jianmin Xue
- School of Graduate, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yong Zhu
- Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xuejun Yang
- Surgical Department of Thoracolumbar, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Liu Y, Du J, Peng P, Cheng R, Lin J, Xu C, Yang H, Cui W, Mao H, Li Y, Geng D. Regulation of the inflammatory cycle by a controllable release hydrogel for eliminating postoperative inflammation after discectomy. Bioact Mater 2021; 6:146-157. [PMID: 32817921 PMCID: PMC7426539 DOI: 10.1016/j.bioactmat.2020.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Surgery is the final choice for most patients with intervertebral disc degeneration (IDD). Operation-caused trauma will cause inflammation in the intervertebral disc. Serious inflammation will cause tissue defects and induce tissue degeneration, IDD recurrence and the occurrence of other diseases. Therefore, we proposed a scheme to treat recurrence after discectomy by inhibiting inflammation with an aspirin (ASP)-loaded hydrogel to restore the mechanical stability of the spine and relieve local inflammation. ASP-liposomes (ASP-Lips) were incorporated into a photocrosslinkable gelatin-methacryloyl (GelMA) via mixing. This material can effectively alleviate inflammation by inhibiting the release of high mobility group box 1 (HMGB1) from the nucleus to the cytoplasm. We further assessed the expression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), and degeneration-related factors, such as type II collagen (COL-2), Aggrecan, matrix metallopeptidases-3 (MMP-3), MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 in rat nucleus pulpous cells. The level of IDD was analyzed through H&E, safranin-O staining and immunohistochemistry in rabbit samples. In vitro, we found that ASP-Lip@GelMA treatment significantly decreased inflammatory cytokines, MMP-3 and -13, and ADAMTS-4 and -5 and up-regulated COL-2 and Aggrecan via the inhibited release of HMGB-1 from the nucleus. In vivo, ASP-Lip@GelMA can effectively inhibit inflammation of local tissue after disc surgery and fill local tissue defects. This composite hydrogel system is a promising way to treat the recurrence of IDD after surgery without persistent complications.
Collapse
Affiliation(s)
- Yu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Jiacheng Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Peng Peng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Ruoyu Cheng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Jiayi Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Congxin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Haiqing Mao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yuling Li
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Nanchong, Sichuan, 637000, PR China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| |
Collapse
|
6
|
Severity of intervertebral disc herniation regulates cytokine and chemokine levels in patients with chronic radicular back pain. Osteoarthritis Cartilage 2020; 28:1341-1350. [PMID: 32653386 PMCID: PMC7529955 DOI: 10.1016/j.joca.2020.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/29/2020] [Accepted: 06/29/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The contributions of intervertebral disc disease and subject-specific covariates to systemic inflammation in low back pain are unknown. We examined the effects of symptomatic disc herniation (DH) and MRI herniation severity on serum cytokine levels in clinical subjects. DESIGN Cytokine levels from lumbar DH subjects (N = 78) were compared to control subjects (N = 57) accounting for effects of DH, age, body mass index (BMI) and gender. Effect of DH severity on cytokine levels was analyzed on subsets of subjects with acute or chronic pain. Serum cytokines were also analyzed in a subset of patients between pre- and 3 months post-surgery. RESULTS Cytokine levels were elevated in the serum of patients with symptomatic DH, and the covariates age, BMI and gender significantly contributed to levels of some cytokines. Severity of herniation was a significant contributor to pain intensity (VAS), serum levels of HMGB1, PDGFbb, and IL-9. The relationship between DH severity and cytokine levels was confirmed in subjects with chronic, but not acute symptoms. Serum levels of macrophage migration inhibitory factor (MIF) decreased, whereas levels of CCL3, CCL11, CXCL1, and CXCL10 were significantly elevated post surgery. CONCLUSIONS This study is the first to show that DH severity is coordinately associated with changes in serum levels of inflammatory cytokines in chronic pain subjects. HMGB1, PDGFbb and IL-9 are novel mediators of increasing DH severity, indicative of cellular damage, neuro-inflammation and angiogenesis. Resolution of inflammation was observed with decrease in MIF post surgery. However, elevated chemokine levels indicate ongoing remodeling and wound healing at 3-month time point.
Collapse
|
7
|
Ji J, Fu T, Dong C, Zhu W, Yang J, Kong X, Zhang Z, Bao Y, Zhao R, Ge X, Sha X, Lu Z, Li J, Gu Z. Targeting HMGB1 by ethyl pyruvate ameliorates systemic lupus erythematosus and reverses the senescent phenotype of bone marrow-mesenchymal stem cells. Aging (Albany NY) 2020; 11:4338-4353. [PMID: 31303606 PMCID: PMC6660056 DOI: 10.18632/aging.102052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs and systems. Mesenchymal stem cells (MSCs) from SLE patients have demonstrated defects such as impaired growth, senescence phenotype and immunomodulatory functions. Some studies have suggested the close connection between inflammation microenvironment and cellular senescence. In the current study, we detected cytokines levels in bone marrow supernatant by the quantitative proteomics analysis, and found the expression of HMGB1 was remarkably increased in bone marrow from SLE patients. Senescence associated-β-galactosidase (SA-β-gal) staining, F-actin staining and flow cytometry were used to detect the senescence of cells. After stimulation of HMGB1 in normal MSCs, the ratio of SA-β-gal positive in BM-MSCs was increased, the organization of cytoskeleton was disordered, and TLR4-NF-κB signaling was activated. Finally, Ethyl pyruvate (EP) (40 mg/kg and 100 mg/kg, three times a week), a high security HMGB1 inhibitor, was injected intraperitoneally to treat MRL/lpr mice for 8 weeks. We demonstrated that EP alleviated the clinical aspects of lupus nephritis and prolonged survival of MRL/lpr mice. In the meantime, EP reversed the senescent phenotype of BM-MSCs from MRL/lpr mice. HMGB1 could be a promising target in SLE patients, and might be one of the reasons of recurrence after MSCs transplantation.
Collapse
Affiliation(s)
- Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenyan Zhu
- Department of Medical Cosmetology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoli Kong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Zhongyuan Zhang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Yanfeng Bao
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Rui Zhao
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinyu Ge
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Xiaoqi Sha
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Zhimin Lu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Jing Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 22600, P.R. China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
8
|
Gacaferi H, Mimpen JY, Baldwin MJ, Snelling SJB, Nelissen RGHH, Carr AJ, Dakin SG. The potential roles of high mobility group box 1 (HMGB1) in musculoskeletal disease: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamez Gacaferi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
- Department of Orthopaedics Leiden University Medical Centre Leiden The Netherlands
| | - Jolet Y. Mimpen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Mathew J. Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | | | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| |
Collapse
|
9
|
Liang L, Fu J, Wang S, Cen H, Zhang L, Mandukhail SR, Du L, Wu Q, Zhang P, Yu X. MiR-142-3p enhances chemosensitivity of breast cancer cells and inhibits autophagy by targeting HMGB1. Acta Pharm Sin B 2020; 10:1036-1046. [PMID: 32642410 PMCID: PMC7332808 DOI: 10.1016/j.apsb.2019.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
MiR-142-3p has been reported to act as a tumor suppressor in breast cancer. However, the regulatory effect of miR-142-3p on drug resistance of breast cancer cells and its underlying mechanism remain unknown. Here, we found that miR-142-3p was significantly downregulated in the doxorubicin (DOX)-resistant MCF-7 cell line (MCF-7/DOX). MiR-142-3p overexpression increased DOX sensitivity and enhanced DOX-induced apoptosis in breast cancer cells. High-mobility group box 1 (HMGB1) is a direct functional target of miR-142-3p in breast cancer cells and miR-142-3p negatively regulated HMGB1 expression. Moreover, overexpression of HMGB1 dramatically reversed the promotion of apoptosis and inhibition of autophagy mediated by miR-142-3p up-regulation. In conclusion, miR-142-3p overexpression may inhibit autophagy and promote the drug sensitivity of breast cancer cells to DOX by targeting HMGB1. The miR-142-3p/HMGB1 axis might be a novel target to regulate the drug resistance of breast cancer patients.
Collapse
|
10
|
Niu CC, Lin SS, Yuan LJ, Lu ML, Ueng SWN, Yang CY, Tsai TT, Lai PL. Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells. Arthritis Res Ther 2019; 21:42. [PMID: 30704538 PMCID: PMC6357369 DOI: 10.1186/s13075-019-1830-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. Methods NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO2/95% air, and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. Results Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. Conclusions HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs.
Collapse
Affiliation(s)
- Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Song-Shu Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Li-Jen Yuan
- Department of Orthopaedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Meng-Ling Lu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Steve W N Ueng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen-Yung Yang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, No 5, Fu-Hsing Street 333, Taoyuan, Taoyuan, Taiwan
| |
Collapse
|
11
|
Shah BS, Burt KG, Jacobsen T, Fernandes TD, Alipui DO, Weber KT, Levine M, Chavan SS, Yang H, Tracey KJ, Chahine NO. High mobility group box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway. J Orthop Res 2019; 37:220-231. [PMID: 30273982 PMCID: PMC7401857 DOI: 10.1002/jor.24154] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (DD) is associated with low back pain, the leading cause of disability worldwide. Damage-associated molecular patterns (DAMPs) that contribute to inflammation and trigger DD have not been well characterized. Extracellular high mobility group box-1 (HMGB1) protein has been implicated as a potent DAMP and pro-inflammatory stimulus in the immune system. In this study, we show that HMGB1 and IL-6 levels increase in patients with advanced DD in comparison to early DD. This study further tested the hypothesis that HMGB1 promotes inflammatory signaling driving DD in human nucleus pulposus (NP) cells and tissue. Immunofluorescence and western blot analysis confirmed the expression of HMGB1 and its extracellular release by NP cells under cell stress. Gene expression and protein quantification indicate that HMGB1 stimulates the expression IL-6 and MMP-1 in a dose-dependent manner. The contributions of toll-like receptor (TLR) -2, -4 and receptor for advanced glycation end products (RAGE) as receptors mediating HMGB1 signaling was examined using small molecule inhibitors. Inhibition of TLR-4 signaling, with TAK-242, completely abrogated HMGB1 induced IL-6 and MMP-1 expression, whereas inhibition of TLR-2, with O-vanillin, or RAGE, with FPS-ZM1, had mild inhibitory effects. HMGB1 stimulation activated NF-ĸB signaling while TAK-242 co-treatment abrogated it. Lastly, effects of HMGB1 on matrix deposition was evaluated in a 3D culture system of human NP cells. These results implicate HMGB1 as a potent DAMP that promotes inflammation in NP cells and degradation of NP tissues. TLR4-HMGB1 axis is a potential major pathway to alleviate disc inflammation and mitigate DD. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Bhranti S. Shah
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Kevin G. Burt
- Department of Orthopedic Surgery, Columbia University, New York, New York,Department of Biomedical Engineering, Columbia University, New York, New York
| | - Timothy Jacobsen
- Department of Orthopedic Surgery, Columbia University, New York, New York,Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tiago D. Fernandes
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| | | | - Kathryn T. Weber
- Department of Surgery, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Mitchell Levine
- Department of Neurosurgery, Lenox Hill Hospital, Northwell Health, New York, New York
| | - Sangeeta S. Chavan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Huan Yang
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Kevin J. Tracey
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Nadeen O. Chahine
- Department of Orthopedic Surgery, Columbia University, New York, New York,Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
12
|
Toll-like Receptor Activation Induces Degeneration of Human Intervertebral Discs. Sci Rep 2017; 7:17184. [PMID: 29215065 PMCID: PMC5719358 DOI: 10.1038/s41598-017-17472-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLR) are activated by endogenous alarmins such as fragmented extracellular matrix compounds found in the degenerating disc. TLRs regulate cytokine, neurotrophin, and protease expression in human disc cells in vitro, and thus control key factors in disc degeneration. However, whether TLR activation leads to degenerative changes in intact human discs is unclear. Nucleus pulposus (NP) cells isolated from non-degenerating discs increase IL-1β and nerve growth factor gene expression following treatment with Pam2CSK4 (TLR2/6 agonist) but not Pam3CSK4 (TLR1/2 agonist). Challenging NP cells with Pam2CSK4 or 30 kDa fibronectin fragments (FN-f, an endogenous TLR2 and TLR4 alarmin) increased secretion of proinflammatory cytokines. We then investigated the effect of TLR activation in intact, non-degenerate, ex vivo human discs. Discs were injected with PBS, Pam2CSK4 and FN-f, and cultured for 28 days. TLR activation increased proteoglycan and ECM protein release into the culture media and decreased proteoglycan content in the NP. Proteases, including MMP3, 13 and HTRA1, are secreted at higher levels following TLR activation. In addition, proinflammatory cytokine levels, including IL-6, TNFα and IFNγ, increased following TLR activation. These results indicate that TLR activation induces degeneration in human discs. Therefore, TLRs are potential disease-modifying therapeutic targets to slow disc degeneration.
Collapse
|
13
|
Wang Y, Ouyang M, Wang Q, Jian Z. MicroRNA-142-3p inhibits hypoxia/reoxygenation‑induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med 2016; 38:1377-1386. [PMID: 28025989 PMCID: PMC5065300 DOI: 10.3892/ijmm.2016.2756] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as cardiac fibrosis, which is characterized as the transdifferentiation of fibroblasts to myofibroblasts and collagen deposition. MicroRNAs (miRNAs or miRs) have been demonstrated to be involved in myocardial I/R injury. However, the underlying molecular mechanism remains largely unclear. In the present study, mouse cardiomyocyte M6200 cells were treated with hypoxia/reoxygenation (H/R). Our data indicated that H/R treatment led to cell apoptosis, the increased expression of fibrosis-related proteins, namely collagen I, II, III, and fibronectin, as well as the downregulation of miR-142-3p in M6200 cells. Overexpression of miR-142-3p suppressed the H/R-induced apoptosis and fibrosis of M6200 cells. Bioinformatics analysis and a Dual-Luciferase reporter assay further identified high mobility group box 1 (HMGB1) as a direct target gene of miR-142-3p, and miR-142-3p negatively regulated the protein level of HMGB1 in M6200 cells. Furthermore, knockdown of HMGB1 enhanced cell proliferation whereas it inhibited the apoptosis and fibrosis of M6200 cells. In addition, TGF-β1/Smad3 signaling was suggested to be involved in the miR-142-3p/HMGB1-mediated apoptosis and fibrosis of M6200 cells treated with H/R. Taken together, the findings of the present study demonstrate that miR-142-3p inhibits H/R-induced apoptosis and fibrosis of cardiomyocytes, partly at least, by the direct inhibition of HMGB1 expression. Therefore, these findings have increased our understanding of the pathogenesis of H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Yi Wang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Ouyang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Wang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zaijin Jian
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
14
|
IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells. Biosci Rep 2016; 36:BSR20160118. [PMID: 27512095 PMCID: PMC5025813 DOI: 10.1042/bsr20160118] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation and cytokines have been recognized to correlate with intervertebral disc (IVD) degeneration (IDD), via mediating the development of clinical signs and symptoms. However, the regulation mechanism remains unclear. We aimed at investigating the regulatory role of interleukin (IL)β and high mobility group box 1 (HMGB1) in the inflammatory response in human IVD cells, and then explored the signalling pathways mediating such regulatory effect. Firstly, the promotion to inflammatory cytokines in IVD cells was examined with ELISA method. And then western blot and real time quantitative PCR were performed to analyse the expression of toll-like receptors (TLRs), receptors for advanced glycation endproducts (RAGE) and NF-κB signalling markers in the IL-1β- or (and) HMGB1-treated IVD cells. Results demonstrated that either IL-1β or HMGB1 promoted the release of the inflammatory cytokines such as prostaglandin E2 (PGE2), TNF-α, IL-6 and IL-8 in human IVD cells. And the expression of matrix metalloproteinases (MMPs) such as MMP-1, -3 and -9 was also additively up-regulated by IL-1β and HMGB1. We also found such additive promotion to the expression of TLR-2, TLR-4 and RAGE, and the NF-κB signalling in intervertebral disc cells. In summary, our study demonstrated that IL-1β and HMGB1 additively promotes the release of inflammatory cytokines and the expression of MMPs in human IVD cells. The TLRs and RAGE and the NF-κB signalling were also additively promoted by IL-1β and HMGB1. Our study implied that the additive promotion by IL-1β and HMGB1 to inflammatory cytokines and MMPs might aggravate the progression of IDD.
Collapse
|
15
|
Krock E, Currie JB, Weber MH, Ouellet JA, Stone LS, Rosenzweig DH, Haglund L. Nerve Growth Factor Is Regulated by Toll-Like Receptor 2 in Human Intervertebral Discs. J Biol Chem 2015; 291:3541-51. [PMID: 26668319 DOI: 10.1074/jbc.m115.675900] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1β (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1β gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1β treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo.
Collapse
Affiliation(s)
- Emerson Krock
- From the Orthopeadic Research Laboratory, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill Scoliosis and Spine Research Group
| | - J Brooke Currie
- From the Orthopeadic Research Laboratory, Faculty of Medicine
| | | | - Jean A Ouellet
- Alan Edwards Centre for Research on Pain, McGill Scoliosis and Spine Research Group
| | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill Scoliosis and Spine Research Group, Integrated Program in Neuroscience, Departments of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, and Faculty of Dentistry, McGill University, Montreal Quebec H3G 1A4, Canada
| | - Derek H Rosenzweig
- From the Orthopeadic Research Laboratory, Faculty of Medicine, McGill Scoliosis and Spine Research Group
| | - Lisbet Haglund
- From the Orthopeadic Research Laboratory, Faculty of Medicine, McGill Scoliosis and Spine Research Group,
| |
Collapse
|