1
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
2
|
Zhang J, Dong Y, Di S, Xie S, Fan B, Gong T. Tumor associated macrophages in esophageal squamous carcinoma: Promising therapeutic implications. Biomed Pharmacother 2023; 167:115610. [PMID: 37783153 DOI: 10.1016/j.biopha.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Esophageal squamous carcinoma (ESCC) is a prevalent and highly lethal malignant tumor, with a five-year survival rate of approximately 20 %. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising over 50 % of the tumor volume. TAMs can be polarized into two distinct phenotypes, M1-type and M2-type, through interactions with cancer cells. M2-type TAMs are more abundant than M1-type TAMs in the TME, contributing to tumor progression, such as tumor cell survival and the construction of an immunosuppressive environment. This review focuses on the role of TAMs in ESCC, including their polarization, impact on tumor proliferation, angiogenesis, invasion, migration, therapy resistance, and immunosuppression. In addition, we discuss the potential of targeting TAMs for clinical therapy in ESCC. A thorough comprehension of the molecular biology about TAMs is essential for the development of innovative therapeutic strategies to treat ESCC.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China; Department of Thoracic Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanxin Dong
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China; Department of Thoracic Surgery, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shouyin Di
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Shun Xie
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Boshi Fan
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Kong Y, Guo L. Sunitinib suppresses M2 polarization of macrophages in tumor microenvironment to regulate hepatocellular carcinoma progression. J Biochem Mol Toxicol 2023; 37:e23333. [PMID: 36797997 DOI: 10.1002/jbt.23333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
This work aimed to investigate the role and mechanism of Sunitinib (Sun) in suppressing M2 polarization of macrophages in tumor microenvironment (TME). IL-4 was applied to induce the M2 polarization of RAW264.7 cells, followed by treatment with Sun at 50 and 100 nM. Flow cytometry (FCM) was conducted to detect the proportion of F4/80 + CD206 + cells. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of IL-10, Arg-1 and VEGF. Immunofluorescence (IF) staining was carried out to detect the expression of CD206 and Arg-1. Besides, western-Blot (WB) assay was performed to measure the levels of p-JAK1 and p-STAT6 proteins. After polarization, the macrophage culture medium was employed to culture hepatocellular carcinoma (HCC) Hca-F cells. Thereafter, Transwell assays were conducted to examine cell invasion and migration, whereas plate clone formation assay was carried out to detect the clone forming capacity. In further experiments, cells were treated with the STAT6 inhibitor, or STAT6 inhibitor + Sun. Then, the polarization levels of RAW264.7 cells were detected. Moreover, this study established the xenograft tumor mouse model. Later, CD206 and Ki67 expression, IL-10, Arg-1 and VEGF expression levels in tissues, and p-JAK1 and p-STAT6 protein levels were detected by histochemical staining. Sun suppressed the M2 polarization of RAW264.7 cells. Compared with IL-4 treatment, the proportion of F4/80 + CD206 + cells decreased. Meanwhile, the levels of IL-10, Arg-1 and VEGF were downregulated, and the phosphorylation level of JAK1-STAT6 signaling was suppressed. After being cocultured with Hca-F, the malignant behaviors of HCC cells were suppressed after Sun treatment. Similarly, STAT6 inhibitor treatment suppressed the M2 polarization, while the combined application of Sun did not further restrain the polarization level. In the mouse model, Sun suppressed the expression of CD206 and Ki67, simultaneously inhibiting the polarization of JAK1-STAT6 signaling. Sunitinib can suppress the M2 polarization of macrophages to exert the anti-HCC effect, which is its another anticancer mechanism.
Collapse
Affiliation(s)
- Yun Kong
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Guo
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
4
|
M2 tumor-associated macrophage mediates the maintenance of stemness to promote cisplatin resistance by secreting TGF-β1 in esophageal squamous cell carcinoma. J Transl Med 2023; 21:26. [PMID: 36641471 PMCID: PMC9840838 DOI: 10.1186/s12967-022-03863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly gastrointestinal malignancy, and chemotherapy resistance is a key factor leading to its poor prognosis. M2 tumor-associated macrophages (M2-TAMs) may be an important cause of chemoresistance in ESCC, but its exact mechanism is still unclear. METHODS In order to study the role of M2-TAMs in ESCC chemoresistance, CCK-8, clone formation assay, flow cytometric apoptosis assay, qRT-PCR, western blotting, and serum-free sphere formation assays were used. In vivo animal experiments and human ESCC tissues were used to confirm the findings. RESULTS In vitro and in vivo animal experiments, M2-TAMs reduced the sensitivity of ESCC cells to cisplatin. Mechanistically, M2-TAMs highly secreted TGF-β1 which activated the TGFβR1-smad2/3 pathway to promote and maintain the stemness characteristic of ESCC cells, which could inhibit the sensitivity to cisplatin. Using TGFβ signaling inhibitor SB431542 or knockdown of TGFβR1 could reverse the cisplatin resistance of ESCC cells. In 92 cases of human ESCC tissues, individuals with a high density of M2-TAMs had considerably higher levels of TGF-β1. These patients also had worse prognoses and richer stemness markers. CONCLUSION TGF-β1 secreted from M2-TAMs promoted and maintained the stemness characteristic to induce cisplatin resistance in ESCC by activating the TGFβ1-Smad2/3 pathway.
Collapse
|
5
|
Correlation between Macrophage Polarization and PD-L1-Related Tumor Microenvironmental Alteration and Metastasis in Pancreatic Ductal Adenocarcinoma. JOURNAL OF ONCOLOGY 2023; 2023:7971306. [PMID: 36923395 PMCID: PMC10010873 DOI: 10.1155/2023/7971306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis; nearly 80% patients have regional or distant metastasis when diagnosed. Tumor microenvironment (TME) alteration and epithelial-to-mesenchymal transition (EMT) have been reported to play a key role in cancer metastasis. However, the correlation between TME and EMT was poorly studied in PDAC. This study aims to explore the correlation between EMT markers and TME alteration, mainly including macrophage polarization and PD-L1 expression change, in primary and metastatic PDAC tissues by immunohistochemistry. The results indicated that macrophage polarization was found in metastases with the number of M1 macrophages (CD86+) decreased and M2 (CD163+) increased, though PD-L1 expression did not have a significant alteration. Compared to primary tumors, E-cadherin was significantly lower, while snail was higher, while no difference was found with N-cadherin and ZEB1. Correlation analysis indicated that snail, but not ZEB1, E-cadherin, or N-cadherin, was highly correlated with macrophage polarization. To conclude, the number of CD86+ M1 macrophages was increased while CD163+ M2 macrophages decreased in metastases, with no significant alteration of PD-L1 expression compared to primary tumors. EMT markers-Snail and E-cadherin-but not ZEB1 or N-cadherin, were found to be higher/lower in metastases, which mean that EMT played an important role in PDAC metastasis. Further analysis indicated that snail was highly correlated with M1 to M2 macrophage polarization, which prompted that EMT may be one reason for macrophage polarization induced TME alteration in PDAC metastasis.
Collapse
|
6
|
Ferroptosis-Related lncRNA Signature Correlates with the Prognosis, Tumor Microenvironment, and Therapeutic Sensitivity of Esophageal Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7465880. [PMID: 35903713 PMCID: PMC9315452 DOI: 10.1155/2022/7465880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent form of esophageal cancer in China and is closely associated with malignant biological characteristics and poor survival. Ferroptosis is a newly discovered iron-dependent mode of cell death that plays an important role in the biological behavior of ESCC cells. The clinical significance of ferroptosis-related long noncoding RNAs (FRLs) in ESCC remains unknown and warrants further research. The current study obtained RNA sequencing profiles and corresponding clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and FRLs were obtained through coexpression analysis. Consensus clustering was employed to divide the subjects into clusters, and immune-associated pathways were identified by functional analysis. The current study observed significant differences in the enrichment scores of immune cells among different clusters. Patients from TCGA-ESCC database were designated as the training cohort. A ten-FRL prediction signature was established using the least absolute shrinkage and selection operator Cox regression model and validated using the GEO cohort and our own independent validation database. Real-time quantitative polymerase chain reaction was used to verify the expression of the ten FRLs, and the ssGSEA analysis was employed to evaluate their function. In addition, the IMvigor database was used to assess the predictive value of the signature in terms of immunotherapeutic responses. Multivariate Cox and stratification analyses revealed that the ten-FRL signature was an independent predictor of the overall survival (OS). Patients with ESCC in the high-risk group displayed worse survival, a characteristic tumor immune microenvironment, and low immunotherapeutic benefits compared to those in the low-risk group. Collectively, the risk model established in this study could serve as a promising predictor of prognosis and immunotherapeutic response in patients with ESCC.
Collapse
|
7
|
Yuan W, Tan T, Liu Y, Du Y, Zhang S, Wang J. The Relationship between VEGF-C, TAM, and Lymph Node Metastasis in Oral Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9910049. [PMID: 35800004 PMCID: PMC9256394 DOI: 10.1155/2022/9910049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the relationship between vascular endothelial growth factor-C (VEGF-C) and tumor-associated macrophages in oral cancer (TAMs) with lymph node metastasis. Method From January 2018 to January 2022, 155 cases of oral cancer tissues and 165 cases of normal mucosal tissues were collected from oral surgical resection tissues or biopsy specimens in Hebei Eye Hospital. Oral cancer tissues were observed. The control group had normal mucosal tissues. The clinical and immune parameters were observed and the treatment of oral cancer is also briefly discussed. Results The number of TAMs and the expression of VEGF-C in oral cancer tissues were significantly higher than those in normal tissues (P < 0.05). The lymphatic vessel density, the number of TAMs, and the expression of VEGF-C in the metastatic group were higher than in nonmetastatic group, and the lymphatic vessel density, the number of TAMs, and the expression of VEGF-C in the paracancerous tissues were higher than central tumor tissue in the metastatic group (P < 0.05). Univariate analysis showed that the number of TAMs was related to the histological stage and the pathological type of oral cancer (P > 0.05). The expression of VEGF-C was associated with the histological stage of oral cancer (P < 0.05). Compared with the immune function after different treatments, the contents of CD4+ in both groups was higher than before, and the combined treatment group was increased more than single treatment group (P < 0.05). The contents of CD3+ and CD8+ in the two groups were lower than before, and the combined treatment group was decreased higher than combined treatment group (P < 0.05). Conclusions The number of TAMs and the expression of VEGF-C in oral cancer tissues are higher than normal tissues. The number of TAMs and the expression of VEGF-C are higher in patients with lymph node metastasis. TAMs and VEGF-C may play an important role in lymph node metastasis of oral cancer. Integrated traditional Chinese and Western medicine can improve the immune function of patients with oral cancer and may improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Wei Yuan
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Tao Tan
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Ying Liu
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Yingjie Du
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Shengjuan Zhang
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| | - Junrong Wang
- Oral and Maxillofacial Surgery, Hebei Eye Hospital, Xingtai, Hebei 054000, China
| |
Collapse
|
8
|
Zheng S, Liu B, Guan X. The Role of Tumor Microenvironment in Invasion and Metastasis of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:911285. [PMID: 35814365 PMCID: PMC9257257 DOI: 10.3389/fonc.2022.911285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, with a high rate of morbidity. The invasion and metastasis of ESCC is the main reason for high mortality. More and more evidence suggests that metastasized cancer cells require cellular elements that contribute to ESCC tumor microenvironment (TME) formation. TME contains many immune cells and stromal components, which are critical to epithelial–mesenchymal transition, immune escape, angiogenesis/lymphangiogenesis, metastasis niche formation, and invasion/metastasis. In this review, we will focus on the mechanism of different microenvironment cellular elements in ESCC invasion and metastasis and discuss recent therapeutic attempts to restore the tumor-suppressing function of cells within the TME. It will represent the whole picture of TME in the metastasis and invasion process of ESCC.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xinyuan Guan,
| |
Collapse
|
9
|
Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-Derived Non-Coding RNAs in the Tumor Microenvironment of Colorectal Cancer: Possible Functions, Mechanisms and Clinical Applications. Front Oncol 2022; 12:887532. [PMID: 35646623 PMCID: PMC9133322 DOI: 10.3389/fonc.2022.887532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death and the third most prevalent malignancy. Colorectal tumors exchange information with the surrounding environment and influence each other, which collectively constitutes the tumor microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-coding RNAs (ncRNAs) play important roles in various pathophysiological processes by regulating the TME of CRC. This review summarizes recent findings on the fundamental roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor metabolism and drug resistance. Certainly, the in-depth understanding of exosomal ncRNAs will provide comprehensive insights into the clinical application of these molecules against CRC.
Collapse
Affiliation(s)
- Xian Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Yuan X, Liu K, Li Y, Zhang AZ, Wang XL, Jiang CH, Liang WH, Zhang HJ, Pang LJ, Li M, Yang L, Qi Y, Zheng Q, Li F, Hu JM. HPV16 infection promotes an M2 macrophage phenotype to promote the invasion and metastasis of esophageal squamous cell carcinoma. Clin Transl Oncol 2021; 23:2382-2393. [PMID: 34075547 DOI: 10.1007/s12094-021-02642-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/07/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES High-risk human papillomavirus (HR-HPV) is an important risk factor for esophageal cancer. Macrophages constitute a crucial immune medium for regulating HPV-related tumors; however, the specific regulatory mechanisms remain unknown. Therefore, the purpose of our current study was to investigate the mechanism by which HPV16E6 regulates macrophages to promote the invasion and metastasis of esophageal cancer. METHODS HPV16E6 infection was detected by polymerase chain reaction. Immunohistochemistry was used to verify the distribution of tumor-associated macrophages (TAMs) and MMP-9 expression in esophageal squamous cell carcinoma tissues (ESCCs), and cancer adjacent normal tissues (CANs) from Kazakh patients. ESCC cells were transfected with a plasmid over-expressing HPV16E6 and non-contact cocultured with macrophages. RESULTS The infection rate of HPV16E6 in Kazakh ESCCs was clearly higher than that in CANs (P < 0.05). The density of CD163-positive TAMs was significantly positively correlated with HPV16E6 infection in ESCCs (P < 0.05). After coculturing macrophages and EC9706 cells transfected with the HPV16E6 plasmid, the phenotype of macrophages transformed into M2 macrophages. The migration and invasion ability of ESCC cells were higher in the HPV16E6-transfected and coculture group than in the HPV16E6 empty vector-transfected and non-cocultured HPV16E6-transfected groups (all P < 0.05). The density of M2-like TAMs in ESCCs was positively correlated with the level of MMP-9 expression. MMP-9 expression in the HPV16E6-ESCC coculture macrophages group was substantially higher than that in controls (all P < 0.05). CONCLUSIONS HPV16 infection mediates tumor-associated macrophages to promote ESCC invasion and migration.
Collapse
Affiliation(s)
- X Yuan
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - K Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - Y Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - A Z Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - X L Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - C H Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - W H Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - H J Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - L J Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - M Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - L Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - Y Qi
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China
| | - Q Zheng
- 69245 Military Hospital, Urumqi, Xinjiang, 831500, China
| | - F Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 10020, China
| | - J M Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi , Xinjiang , 832000, China.
| |
Collapse
|
11
|
Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, Allen IC. Immunological Effects of Histotripsy for Cancer Therapy. Front Oncol 2021; 11:681629. [PMID: 34136405 PMCID: PMC8200675 DOI: 10.3389/fonc.2021.681629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide despite major advancements in diagnosis and therapy over the past century. One of the most debilitating aspects of cancer is the burden brought on by metastatic disease. Therefore, an ideal treatment protocol would address not only debulking larger primary tumors but also circulating tumor cells and distant metastases. To address this need, the use of immune modulating therapies has become a pillar in the oncology armamentarium. A therapeutic option that has recently emerged is the use of focal ablation therapies that can destroy a tumor through various physical or mechanical mechanisms and release a cellular lysate with the potential to stimulate an immune response. Histotripsy is a non-invasive, non-ionizing, non-thermal, ultrasound guided ablation technology that has shown promise over the past decade as a debulking therapy. As histotripsy therapies have developed, the full picture of the accompanying immune response has revealed a wide range of immunogenic mechanisms that include DAMP and anti-tumor mediator release, changes in local cellular immune populations, development of a systemic immune response, and therapeutic synergism with the inclusion of checkpoint inhibitor therapies. These studies also suggest that there is an immune effect from histotripsy therapies across multiple murine tumor types that may be reproducible. Overall, the effects of histotripsy on tumors show a positive effect on immunomodulation.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
12
|
Cui K, Hu S, Mei X, Cheng M. Innate Immune Cells in the Esophageal Tumor Microenvironment. Front Immunol 2021; 12:654731. [PMID: 33995371 PMCID: PMC8113860 DOI: 10.3389/fimmu.2021.654731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common mucosa-associated tumors, and is characterized by aggressiveness, poor prognosis, and unfavorable patient survival rates. As an organ directly exposed to the risk of foodborne infection, the esophageal mucosa harbors distinct populations of innate immune cells, which play vital roles in both maintenance of esophageal homeostasis and immune defense and surveillance during mucosal anti-infection and anti-tumor responses. In this review, we highlight recent progress in research into innate immune cells in the microenvironment of EC, including lymphatic lineages, such as natural killer and γδT cells, and myeloid lineages, including macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells and eosinophils. Further, putative innate immune cellular and molecular mechanisms involved in tumor occurrence and progression are discussed, to highlight potential directions for the development of new biomarkers and effective intervention targets, which can hopefully be applied in long-term multilevel clinical EC treatment. Fully understanding the innate immunological mechanisms involved in esophageal mucosa carcinogenesis is of great significance for clinical immunotherapy and prognosis prediction for patients with EC.
Collapse
Affiliation(s)
- Kele Cui
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shouxin Hu
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Min Cheng
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- Cancer Immunotherapy Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 2021; 10:1889-1916. [PMID: 34012800 PMCID: PMC8107755 DOI: 10.21037/tlcr-20-1241] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the deadliest malignancy worldwide. An inflammatory microenvironment is a key factor contributing to lung tumor progression. Tumor-Associated Macrophages (TAMs) are prominent components of the cancer immune microenvironment with diverse supportive and inhibitory effects on growth, progression, and metastasis of lung tumors. Two main macrophage phenotypes with different functions have been identified. They include inflammatory or classically activated (M1) and anti-inflammatory or alternatively activated (M2) macrophages. The contrasting functions of TAMs in relation to lung neoplasm progression stem from the presence of TAMs with varying tumor-promoting or anti-tumor activities. This wide spectrum of functions is governed by a network of cytokines and chemokines, cell-cell interactions, and signaling pathways. TAMs are promising therapeutic targets for non-small cell lung cancer (NSCLC) treatment. There are several strategies for TAM targeting and utilizing them for therapeutic purposes including limiting monocyte recruitment and localization through various pathways such as CCL2-CCR2, CSF1-CSF1R, and CXCL12-CXCR4, targeting the activation of TAMs, genetic and epigenetic reprogramming of TAMs to antitumor phenotype, and utilizing TAMs as the carrier for anti-cancer drugs. In this review, we will outline the role of macrophages in the lung cancer initiation and progression, pathways regulating their function in lung cancer microenvironment as well as the role of these immune cells in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Sadat Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
14
|
Nakajima S, Mimura K, Saito K, Thar Min AK, Endo E, Yamada L, Kase K, Yamauchi N, Matsumoto T, Nakano H, Kanke Y, Okayama H, Saito M, Neupane P, Saze Z, Watanabe Y, Hanayama H, Hayase S, Kaneta A, Momma T, Ohki S, Ohira H, Kono K. Neoadjuvant Chemotherapy Induces IL34 Signaling and Promotes Chemoresistance via Tumor-Associated Macrophage Polarization in Esophageal Squamous Cell Carcinoma. Mol Cancer Res 2021; 19:1085-1095. [PMID: 33674443 DOI: 10.1158/1541-7786.mcr-20-0917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) plays a key role in the efficacy of neoadjuvant chemotherapy (NAC) in solid tumors including esophageal squamous cell carcinoma (ESCC). However, the TME profile of ESCC treated with NAC is not fully understood. In this study, we investigated the effect of NAC on the TME especially tumor-associated macrophages (TAM), the important immunosuppressive components of the TME, in ESCC. We quantified the expression of CD163, a crucial marker of TAM, in pretherapeutic biopsy and surgically resected ESCC specimens from patients who received NAC (n = 33) or did not receive NAC (n = 12). We found that NAC dramatically increased the expression of CD163 on TAMs in ESCC. Colony-stimulating factor 1 (CSF-1) and IL34 are crucial cytokines that recruit monocytes into tumor sites and differentiate them into TAMs. Interestingly, NAC significantly upregulated the expression of IL34 but not CSF-1 on tumor cells, and the frequencies of CD163+ TAMs were significantly correlated with IL34 expression in ESCC after NAC. The expression of IL34 in NAC-nonresponsive patients was significantly higher than that in NAC-responsive patients, and patients with IL34-high ESCC exhibited worse prognosis as compared with patients with IL34-low ESCC. We also demonstrated that 5-fluorouracil (5-FU)/cisplatin preferentially increased mRNA expression of IL34 on human ESCC cell lines. Human peripheral blood monocytes co-cultured with ESCC cells treated with 5-FU/cisplatin increased the expression of CD163, which was attenuated by the treatment with CSF-1R inhibitors. These data suggest that IL34 expression by NAC shifts the TME toward CD163+ TAM-rich immunosuppressive and chemo-insensitive microenvironment in ESCC. IMPLICATIONS: The blockade of IL34 signaling may offer a novel therapeutic strategy against chemoresistance in ESCC by inhibiting M2-TAM polarization.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aung Kyi Thar Min
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoto Yamauchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takuro Matsumoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Nakano
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuyuki Kanke
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Prajwal Neupane
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
15
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
16
|
Yuan X, Li Y, Zhang AZ, Jiang CH, Li FP, Xie YF, Li JF, Liang WH, Zhang HJ, Liu CX, Pang LJ, Shen XH, Li F, Hu JM. Tumor-associated macrophage polarization promotes the progression of esophageal carcinoma. Aging (Albany NY) 2020; 13:2049-2072. [PMID: 33323552 PMCID: PMC7880404 DOI: 10.18632/aging.202201] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
The immune response facilitated by tumor-associated macrophages is a vital determinant of tumor progression. We identified differentially expressed genes between various macrophage phenotypes in the Gene Expression Omnibus, and used Kaplan-Meier Plotter to determine which of them altered the prognosis of esophageal carcinoma patients. Fibrinogen-like protein 2 (FGL2), an immunosuppressive factor in the tumor microenvironment of various cancers, was upregulated in M2 macrophages, and higher FGL2 expression was associated with poorer survival in esophageal carcinoma patients. Using the TIMER database, we found that FGL2 expression correlated positively with the levels of immune markers of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in esophageal carcinoma samples. Correlation analyses in cBioPortal revealed that the mRNA levels of FGL2 correlated strongly with those of interleukin 10, matrix metalloproteinase 9, C-C motif chemokine ligand 5, T-cell immunoglobulin mucin 3, interleukin 13, vascular cell adhesion molecule 1, macrophage colony-stimulating factor and fibroblast growth factor 7 in esophageal carcinoma tissues. The same cytokines were upregulated when esophageal squamous cell carcinoma cells were co-cultured with M2-like tumor-associated macrophages. Thus, by secreting FGL2, M2-like tumor-associated macrophages may create an immunosuppressive tumor microenvironment that induces the occurrence and progression of esophageal carcinoma.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Ya Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - An Zhi Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Chen Hao Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Fan Ping Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Yu Fang Xie
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Jiang Fen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Wei Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Hai Jun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Chun Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Li Juan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Xi Hua Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| |
Collapse
|
17
|
Jiang CH, Liang WH, Li FP, Xie YF, Yuan X, Zhang HJ, Li M, Li JF, Zhang AZ, Yang L, Liu CX, Pang LJ, Li F, Hu JM. Distribution and prognostic impact of M1 macrophage on esophageal squamous cell carcinoma. Carcinogenesis 2020; 42:537-545. [PMID: 33269791 DOI: 10.1093/carcin/bgaa128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 11/14/2022] Open
Abstract
Macrophages are a double-edged sword with potential cancer-promoting and anticancer effects. Controversy remains regarding the effect of macrophages, especially M1 macrophages, on tumor promotion and suppression. We aimed to investigate the role of M1 macrophages in the occurrence and progression of esophageal squamous cell carcinoma (ESCC). Analyzing the data in Gene Expression Omnibus database by the CIBERSORT algorithm found that M1 macrophages were one of the important components of many immune cells in ESCCs, and the increase in their number was obviously negatively correlated with tumor T staging. This result was verified by our experimental data: the density of CD68/HLA-DR double-stained M1 macrophages in ESCC tumor nest and tumor stroma was significantly higher than that in cancer-adjacent normal (CAN) tissues. The density of M1 macrophages in ESCC tumor nest was negatively correlated with the patient's lymph node metastasis and clinical stage (P < 0.05), and the negative tendency was more obvious for M1 macrophages in ESCC tumor stroma (P < 0.001). Exposure to M1 macrophage-conditioned medium inhibited ESCC cell migration and invasion ability significantly (P < 0.05). Moreover, the increased M1 macrophage density in ESCC tumor stroma correlated positively with good prognosis of ESCC. M1 macrophages were involved in inhibiting ESCC cell migration and invasion, which could serve as a good prognostic factor in patients with ESCC.
Collapse
Affiliation(s)
- Chen Hao Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Wei Hua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Fan Ping Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yu Fang Xie
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xin Yuan
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Hai Jun Zhang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Man Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jiang Fen Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - An Zhi Zhang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lan Yang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Chun Xia Liu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Li Juan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Ming Hu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)/Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
18
|
Barros LRC, Souza-Santos PTD, Pretti MAM, Vieira GF, Bragatte MADS, Mendes MFDA, De Freitas MV, Scherer NDM, De Oliveira IM, Rapozo DCM, Fernandes PV, Simão TDA, Soares-Lima SC, Boroni M, Ribeiro Pinto LF, Bonamino MH. High infiltration of B cells in tertiary lymphoid structures, TCR oligoclonality, and neoantigens are part of esophageal squamous cell carcinoma microenvironment. J Leukoc Biol 2020; 108:1307-1318. [PMID: 32827331 DOI: 10.1002/jlb.5ma0720-710rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCA) exhibits high intratumoral molecular heterogeneity posing a challenge to cancer therapy. Immune checkpoint blockade therapy has been approved for this disease, but with modest results. RNA-Seq data from paired tumor and surrounding nonmalignant tissue from 14 patients diagnosed with ESCA without previous treatment and from The Cancer Genome Atlas-ESCA cohort were analyzed. Herein, we investigated ESCA immune landscape including mutation-derived neoantigens and immune cell subpopulations. Tumor-associated antigen expression was determined by in silico analyses and confirmed by immunohistochemistry showing that PRAME, CEACAM4, and MAGEA11 proteins are expressed on tumors. Immune checkpoint molecules gene expression was higher in the tumor compared with surrounding nonmalignant tissue, but its expression varies greatly among patients. TCR repertoire and BCR transcripts analysis evidenced low clonal diversity with one TCR clone predicted to be specific for a MAGEA11-derived peptide. A high number of B-cell clones infiltrating the tumors and the abundance of these cells in tertiary lymphoid structures observed in ESCA tumors support B cells as a potential immune modulator in this tumor.
Collapse
Affiliation(s)
| | | | - Marco Antonio Marques Pretti
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil.,Laboratório de Bioinformática e Biologia Computacional, Instituto Nacional de Câncer, INCA
| | - Gustavo Fioravanti Vieira
- Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcelo Alves De Souza Bragatte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcus Fabiano De Almeida Mendes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Martiela Vaz De Freitas
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | | | | - Tatiana De Almeida Simão
- Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Instituto Nacional de Câncer, INCA
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil.,Departamento de Bioquímica, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rio de Janeiro, Brazil.,Vice-Presidência de Pesquisa e Coleções Biológicas (VPPCB), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Ju S, Xu C, Wang G, Zhang L. VEGF-C Induces Alternative Activation of Microglia to Promote Recovery from Traumatic Brain Injury. J Alzheimers Dis 2020; 68:1687-1697. [PMID: 30958378 DOI: 10.3233/jad-190063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI), a brain disorder that causes death and long-term disability in humans, is increasing in prevalence, though there is a lack of protective or therapeutic strategies for mitigating the damage after TBI and for preserving neurological functionality. Microglia cells play a key role in neuroinflammation following TBI, but their regulation and polarization by a member of the vascular endothelial growth factor (VEGF) family, VEGF-C, is unknown. Here, we show that VEGF-C induced M2 polarization in a murine microglia cell line, BV-2, in vitro, by a mechanism that required signaling from its unique receptor, VEGF receptor 3 (VEGFR3). Moreover, in a TBI model in rats, VEGF-C administration induced M2 polarization of microglia cells, significantly improved motor deficits after experimental TBI, and significantly improved neurological function following TBI, likely through a reduction in cell apoptosis. Together, our data reveal a previously unknown role of VEGF-C/VEGFR3 signaling in the regulation of post-TBI microglia cell polarization, which appears to be crucial for recovery from TBI.
Collapse
Affiliation(s)
- Shiming Ju
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gan Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, Xu D. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Front Immunol 2020; 11:1731. [PMID: 32849616 PMCID: PMC7417513 DOI: 10.3389/fimmu.2020.01731] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
The immunosuppressive status of the tumor microenvironment (TME) remains poorly defined due to a lack of understanding regarding the function of tumor-associated macrophages (TAMs), which are abundant in the TME. TAMs are crucial drivers of tumor progression, metastasis, and resistance to therapy. Intra- and inter-tumoral spatial heterogeneities are potential keys to understanding the relationships between subpopulations of TAMs and their functions. Antitumor M1-like and pro-tumor M2-like TAMs coexist within tumors, and the opposing effects of these M1/M2 subpopulations on tumors directly impact current strategies to improve antitumor immune responses. Recent studies have found significant differences among monocytes or macrophages from distinct tumors, and other investigations have explored the existence of diverse TAM subsets at the molecular level. In this review, we discuss emerging evidence highlighting the redefinition of TAM subpopulations and functions in the TME and the possibility of separating macrophage subsets with distinct functions into antitumor M1-like and pro-tumor M2-like TAMs during the development of tumors. Such redefinition may relate to the differential cellular origin and monocyte and macrophage plasticity or heterogeneity of TAMs, which all potentially impact macrophage biomarkers and our understanding of how the phenotypes of TAMs are dictated by their ontogeny, activation status, and localization. Therefore, the detailed landscape of TAMs must be deciphered with the integration of new technologies, such as multiplexed immunohistochemistry (mIHC), mass cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), spatial transcriptomics, and systems biology approaches, for analyses of the TME.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Li Y, You MJ, Yang Y, Hu D, Tian C. The Role of Tumor-Associated Macrophages in Leukemia. Acta Haematol 2019; 143:112-117. [PMID: 31288222 DOI: 10.1159/000500315] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
In addition to intrinsic factors, leukemia cell growth is influenced by the surrounding nonhematopoietic cells in the leukemic microenvironment, including fibroblasts, mesenchymal stem cells, vascular cells, and various immune cells. Despite the fact that macrophages are an important component of human innate immunity, tumor-associated macrophages (TAMs) have long been considered as an accomplice promoting tumor growth and metastasis. TAMs are activated by an abnormal malignant microenvironment, polarizing into a specific phenotype and participating in tumor progression. TAMs that exist in the microenvironment of different types of leukemia are called leukemia-associated macrophages (LAMs), which are reported to be associated with the progression of leukemia. This review describes the role of LAMs in different leukemia subtypes.
Collapse
Affiliation(s)
- Yueyang Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dongzhi Hu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chen Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China,
| |
Collapse
|
22
|
Liu J, Li C, Zhang L, Liu K, Jiang X, Wang X, Yang L, Liang W, Liu K, Hu J, Li F. Association of tumour-associated macrophages with cancer cell EMT, invasion, and metastasis of Kazakh oesophageal squamous cell cancer. Diagn Pathol 2019; 14:55. [PMID: 31186031 PMCID: PMC6560903 DOI: 10.1186/s13000-019-0834-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
Background Tumour-associated macrophages (TAMs) play an important role in the growth, progression, and metastasis of tumours. Epithelial-mesenchymal transition (EMT) is a mechanism for tumour invasion and metastasis. In this study, we aimed to determine whether TAMs can induce EMT for the invasion and metastasis of Kazakh oesophageal squamous cell cancer (ESCC). Methods CD163 was used as a marker for TAMs, and the density of TAMs in tumour nest and surrounding stroma was quantified using immunohistochemistry (IHC). IHC staining was used to evaluate the expression of E-cadherin (epithelial marker) and vimentin (mesenchymal marker) in Kazakh ESCC and cancer-adjacent normal tissues (CANs). Additionally, 6-well transwell plates (0.4 μm) were used to establish the co-culture system of ESCC (EC109 or EC9706) cells and macrophages. Real-time quantitative polymerase chain reaction (qPCR) and western blot experiments were used to determine whether ESCC cells undergo EMT transformation after co-culture with macrophages. Transwell assays were used to detect the migration and invasion of the ESCC cells. Results The distribution of CD163-positive TAMs in cancer tissues was closely related to EMT in Kazakh ESCC. The expression of vimentin in the ESCC cells was significantly upregulated, the expression of E-cadherin was significantly downregulated, and the invasion and migration of the ESCC cells were significantly enhanced after tumour-associated macrophages were added to the co-culture. Conclusions Tumour-associated macrophages promote EMT in ESCC, which may be one of the important factors involved in the invasion and progression of Kazakh ESCC.
Collapse
Affiliation(s)
- Jihong Liu
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China.,Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, People's Republic of China
| | - Chunxiao Li
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China
| | - Liyan Zhang
- Department of Neurology, Beijing Friendship Hospital,Capital Medical University, Beijing, 100020, People's Republic of China
| | - Kai Liu
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China
| | - Xianli Jiang
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China
| | - Xueli Wang
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China
| | - Lan Yang
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China
| | - Weihua Liang
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China
| | - Kunping Liu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, People's Republic of China
| | - Jianming Hu
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China.
| | - Feng Li
- Department of Anatomic and Surgical Pathology, and Key Laboratory of Xinjiang Endemic and Ethnic Diseses, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, People's Republic of China. .,Department of Pathology and Medical Research Center, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
23
|
Salmaninejad A, Valilou SF, Soltani A, Ahmadi S, Abarghan YJ, Rosengren RJ, Sahebkar A. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol (Dordr) 2019; 42:591-608. [PMID: 31144271 DOI: 10.1007/s13402-019-00453-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are known to play important roles in the initiation and progression of human cancers, as well as in angiogenesis. TAMs are considered as main components of the tumor microenvironment. Targeting TAMs may serve as a therapeutic strategy for the treatment of cancer. In this review, the signaling pathways, origin, function, polarization and clinical application of TAMs are discussed. The role of TAMs in tumor initiation, progression, angiogenesis, invasion and metastasis are also emphasized. In addition, a variety of clinical and pre-clinical approaches to target TAMs are discussed. CONCLUSIONS Clinical therapeutic approaches that show most promise include blocking the extravasation of TAMs along with using TAMs as diagnostic biomarkers for cancer progression. The targeting of TAMs in a variety of clinical settings appears to be a promising strategy for decreasing metastasis formation and for improving patient outcome.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Farajzadeh Valilou
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Soltani
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
24
|
Gu J, Ji Z, Li D, Dong Q. Proliferation inhibition and apoptosis promotion by dual silencing of VEGF and Survivin in human osteosarcoma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:59-67. [PMID: 30566604 DOI: 10.1093/abbs/gmy146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/12/2022] Open
Abstract
Simultaneous silencing of multiple upregulated genes is an attractive and viable treatment strategy for many incurable diseases including cancer. Herein we used a dual gene-targeted siRNA conjugate composed of VEGF and Survivin siRNA sequences in the same backbone to inhibit proliferation and angiogenesis in two human osteosarcoma cell lines. We synthesized siRNA sequences targeting the VEGF and Survivin genes individually (VEGF siRNA and Survivin siRNA) or simultaneously (one-chain-double-target siRNA: dual siRNA). VEGF and Survivin mRNA and protein expression levels in human osteosarcoma MG-63 and Saos-2 cells were detected by qRT-PCR and western blot analysis. VEGF and Survivin protein location and expression were evaluated by immunohistochemistry and immunofluorescence staining. MG-63 and Saos-2 cell migration, proliferation, apoptosis, and angiogenesis were detected by scratch test, MTT assay, flow cytometry, and capillary tube assay respectively. The dual siRNA induced similar downregulation of VEGF and Survivin mRNA and protein levels, compared with VEGF siRNA or Survivin siRNA alone. The dual siRNA caused greater suppression of MG-63 and Saos-2 cell migration, proliferation and angiogenesis, and promoted more cell apoptosis than VEGF siRNA or Survivin siRNA alone, suggesting that the effects of the dual siRNA on inhibiting cell proliferation, migration, and angiogenesis and promoting apoptosis were superior to those of the single-target siRNAs. Simultaneous silencing of VEGF and Survivin using the dual siRNA may be an advantageous alternative for the development of therapeutic strategies against human osteosarcoma.
Collapse
Affiliation(s)
- Junquan Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Soochow, China
- Department of Orthopaedics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Zhoujing Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Li
- Department of Orthopaedics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Qirong Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
25
|
Yang M, McKay D, Pollard JW, Lewis CE. Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Res 2018; 78:5492-5503. [PMID: 30206177 PMCID: PMC6171744 DOI: 10.1158/0008-5472.can-18-1367] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Tumor-associated macrophages are a major constituent of malignant tumors and are known to stimulate key steps in tumor progression. In our review in this journal in 2006, we postulated that functionally distinct subsets of these cells exist in different areas within solid tumors. Here, we review the many experimental and clinical studies conducted since then to investigate the function(s), regulation, and clinical significance of macrophages in these sites. The latter include three sites of cancer cell invasion, tumor nests, the tumor stroma, and areas close to, or distant from, the tumor vasculature. A more complete understanding of macrophage diversity in tumors could lead to the development of more selective therapies to restore the formidable, anticancer functions of these cells. Cancer Res; 78(19); 5492-503. ©2018 AACR.
Collapse
Affiliation(s)
- Ming Yang
- Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Daniel McKay
- Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Claire E Lewis
- Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, United Kingdom.
| |
Collapse
|
26
|
Li H, Huang N, Zhu W, Wu J, Yang X, Teng W, Tian J, Fang Z, Luo Y, Chen M, Li Y. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018; 18:579. [PMID: 29783929 PMCID: PMC5963019 DOI: 10.1186/s12885-018-4299-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) play a critical role in modulating the tumor microenvironment and promote tumor metastases. Our studies have demonstrated that ginsenoside Rh2 (G-Rh2), a monomeric compound extracted from ginseng, is a promising anti-tumor agent in lung cancer cells. However, it remains unclear whetherG-Rh2 can modulate the differentiation of TAMs and its interaction with tumor microenvironment. In this study, we investigated how G-Rh2 regulates the phenotype of macrophages and affects the migration of non-small cell lung cancer (NSCLC) cells. Methods Murine macrophage-like RAW264.7 cells and human THP-1 monocyte were differentiated into M1 and M2 subsets of macrophages with different cytokines combination, which were further identified by flow cytometry with specific biomarkers. M2 macrophages were sorted out to co-culture with NSCLC cell lines, A549 and H1299. Wound healing assay was performed to examine the cell migration. Expression levels of matrix metalloproteinases 2 and 9 (MMP-2, − 9) and vascular endothelial growth factor-C (VEGF-C) were measured by RT-qPCR and western blot, and the release of VEGF in the supernatant was measured by a VEGF ELISA kit. Finally, modulation of TAMs phenotype and VEGF expression by G-Rh2 was examined in vivo. Results We demonstrated that M2 subset of macrophages alternatively differentiated from RAW264.7 or THP-1cells promote migration of NSCLC cells. Further examinations revealed that NSCLC significantly increased the release of VEGF to the media and elevated the expression levels of VEGF at mRNA and protein levels after being co-cultured with M2 macrophages. Similar alterations in MMP-2 and MMP-9 were observed in NSCLC after being co-cultured. Of note,G-Rh2 had a potential to effectively convert M2 phenotype to M1 subset of macrophages. Importantly, G-Rh2 had a preference to decrease the expression levels of VEGF, MMP2, and MMP9 in co-cultured lung cancer cells, over than those in lung cancer cells without co-culturing. Consistently, G-Rh2 reduced M2 macrophage marker CD206 and VEGF expression levels in vivo. Conclusions All of these results suggested that M2 subset macrophages drive lung cancer cells with more aggressive phenotypes. G-Rh2 has a potential to convert TAMs from M2 subset to M1 in the microenvironment and prevents lung cancer cell migration, suggesting the therapeutic effects of G-Rh2onlung cancer.
Collapse
Affiliation(s)
- Honglin Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Nan Huang
- Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Weikang Zhu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Xiaohui Yang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Jianhui Tian
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China
| | - Min Chen
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China.
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.274, Zhijiang Road, Jing'an District, Shanghai, 200071, China.
| |
Collapse
|