1
|
Kuick CH, Tan JY, Jasmine D, Sumanty T, Ng AYJ, Venkatesh B, Chen H, Loh E, Jain S, Seow WY, Ng EHQ, Lian DWQ, Soh SY, Chang KTE, Chen ZX, Loh AHP. Mutations of 1p genes do not consistently abrogate tumor suppressor functions in 1p-intact neuroblastoma. BMC Cancer 2022; 22:717. [PMID: 35768791 PMCID: PMC9245282 DOI: 10.1186/s12885-022-09800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Deletion of 1p is associated with poor prognosis in neuroblastoma, however selected 1p-intact patients still experience poor outcomes. Since mutations of 1p genes may mimic the deleterious effects of chromosomal loss, we studied the incidence, spectrum and effects of mutational variants in 1p-intact neuroblastoma. Methods We characterized the 1p status of 325 neuroblastoma patients, and correlated the mutational status of 1p tumor suppressors and neuroblastoma candidate genes with survival outcomes among 100 1p-intact cases, then performed functional validation of selected novel variants of 1p36 genes identified from our patient cohort. Results Among patients with adverse disease characteristics, those who additionally had 1p deletion had significantly worse overall survival. Among 100 tumor-normal pairs sequenced, somatic mutations of 1p tumor suppressors KIF1Bβ and CHD5 were most frequent (2%) after ALK and ATRX (8%), and BARD1 (3%). Mutations of neuroblastoma candidate genes were associated with other synchronous mutations and concurrent 11q deletion (P = 0.045). In total, 24 of 38 variants identified were novel and predicted to be deleterious or pathogenic. Functional validation identified novel KIF1Bβ I1355M variant as a gain-of-function mutation with increased expression and tumor suppressive activity, correlating with indolent clinical behavior; another novel variant CHD5 E43Q was a loss-of-function mutation with decreased expression and increased long-term cell viability, corresponding with aggressive disease characteristics. Conclusions Our study showed that chromosome 1 gene mutations occurred frequently in 1p-intact neuroblastoma, but may not consistently abrogate the function of bonafide 1p tumor suppressors. These findings may augment the evolving model of compounding contributions of 1p gene aberrations toward tumor suppressor inactivation in neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09800-0.
Collapse
Affiliation(s)
- Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Jia Ying Tan
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Deborah Jasmine
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tohari Sumanty
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Alvin Y J Ng
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Byrrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Wan Yi Seow
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Zhi Xiong Chen
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,National University Cancer Institute, Singapore, 119074, Singapore.
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Duke NUS Medical School, Singapore, 169857, Singapore. .,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899, Singapore.
| |
Collapse
|
2
|
Islam F, Abe I, Pillai S, Smith RA, Lam AKY. Editorial: Recent Advances in Pheochromocytoma and Paraganglioma: Molecular Pathogenesis, Clinical Impacts, and Therapeutic Perspective. Front Endocrinol (Lausanne) 2021; 12:720983. [PMID: 34497588 PMCID: PMC8419464 DOI: 10.3389/fendo.2021.720983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | - Robert A. Smith
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alfred King-Yin Lam
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Herston, QLD, Australia
- Cancer Molecular Pathology of School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Sarkadi B, Liko I, Nyiro G, Igaz P, Butz H, Patocs A. Analytical Performance of NGS-Based Molecular Genetic Tests Used in the Diagnostic Workflow of Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:4219. [PMID: 34439371 PMCID: PMC8392134 DOI: 10.3390/cancers13164219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Next Generation Sequencing (NGS)-based methods are high-throughput and cost-effective molecular genetic diagnostic tools. Targeted gene panel and whole exome sequencing (WES) are applied in clinical practice for assessing mutations of pheochromocytoma/paraganglioma (PPGL) associated genes, but the best strategy is debated. Germline mutations of at the least 18 PPGL genes are present in approximately 20-40% of patients, thus molecular genetic testing is recommended in all cases. We aimed to evaluate the analytical and clinical performances of NGS methods for mutation detection of PPGL-associated genes. WES (three different library preparation and bioinformatics workflows) and an in-house, hybridization based gene panel (endocrine-onco-gene-panel- ENDOGENE) was evaluated on 37 (20 WES and 17 ENDOGENE) samples with known variants. After optimization of the bioinformatic workflow, 61 additional samples were tested prospectively. All clinically relevant variants were validated with Sanger sequencing. Target capture of PPGL genes differed markedly between WES platforms and genes tested. All known variants were correctly identified by all methods, but methods of library preparations, sequencing platforms and bioinformatical settings significantly affected the diagnostic accuracy. The ENDOGENE panel identified several pathogenic mutations and unusual genotype-phenotype associations suggesting that the whole panel should be used for identification of genetic susceptibility of PPGL.
Collapse
Affiliation(s)
- Balazs Sarkadi
- MTA-SE Hereditary Tumors Research Group, Eotvos Lorand Research Network, H-1089 Budapest, Hungary; (B.S.); (I.L.); (H.B.)
| | - Istvan Liko
- MTA-SE Hereditary Tumors Research Group, Eotvos Lorand Research Network, H-1089 Budapest, Hungary; (B.S.); (I.L.); (H.B.)
- Bionics Innovation Center, H-1089 Budapest, Hungary;
| | - Gabor Nyiro
- Bionics Innovation Center, H-1089 Budapest, Hungary;
- MTA-SE Molecular Medicine Research Group, Eotvos Lorand Research Network, H-1083 Budapest, Hungary;
| | - Peter Igaz
- MTA-SE Molecular Medicine Research Group, Eotvos Lorand Research Network, H-1083 Budapest, Hungary;
- Department of Endocrinology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary
| | - Henriett Butz
- MTA-SE Hereditary Tumors Research Group, Eotvos Lorand Research Network, H-1089 Budapest, Hungary; (B.S.); (I.L.); (H.B.)
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Attila Patocs
- MTA-SE Hereditary Tumors Research Group, Eotvos Lorand Research Network, H-1089 Budapest, Hungary; (B.S.); (I.L.); (H.B.)
- Bionics Innovation Center, H-1089 Budapest, Hungary;
- Department of Laboratory Medicine, Semmelweis University, H-1089 Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, H-1122 Budapest, Hungary
| |
Collapse
|
4
|
Yoshii H, Izumi H, Tajiri T, Mukai M, Nomura E, Makuuchi H. A patient with paraganglioma undergoing laparoscopic resection: A case report. Clin Case Rep 2021; 9:e04145. [PMID: 34136230 PMCID: PMC8190555 DOI: 10.1002/ccr3.4145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/09/2022] Open
Abstract
Paraganglioma is a very rare extraadrenal nonepithelial tumor. The number of cases of laparoscopic surgery in Paraganglioma is small and controversial. This study encountered a case of successful transperitoneal laparoscopic surgery for a 56-mm paraganglioma in a 53-year-old female. Moreover, previous reports on laparoscopic surgery for paraganglioma are reviewed.
Collapse
Affiliation(s)
- Hisamichi Yoshii
- Department of SurgeryTokai University School of MedicineIseharaJapan
| | - Hideki Izumi
- Department of SurgeryTokai University School of MedicineIseharaJapan
| | - Takuma Tajiri
- Department of PathologyTokai University School of MedicineIseharaJapan
| | - Masaya Mukai
- Department of SurgeryTokai University School of MedicineIseharaJapan
| | - Eiji Nomura
- Department of SurgeryTokai University School of MedicineIseharaJapan
| | - Hiroyasu Makuuchi
- Department of SurgeryTokai University School of MedicineIseharaJapan
| |
Collapse
|
5
|
Wang W, Qin Y, Zhang H, Chen K, Liu Z, Zheng S. A rare case of retroperitoneal paraganglioma located in the neck of the pancreas: a case report and literature review. Gland Surg 2021. [PMID: 33968704 DOI: 10.21037/gs] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paraganglioma (PGL) is an uncommon tumor located in the head, neck and abdomen. The majority of the tumor is benign and the patient has no obvious clinical symptoms. However, PGL located in the pancreas is rather rare and tends to mimic Castleman's disease, pancreatic neuroendocrine tumors and pancreatic primary tumor. Herein, we reported a patient with PGL that occurred in the neck of the pancreas. A 75-year-old Chinese female presented to our hospital with a complaint of upper abdomen pain for two weeks and she had good past health. The laboratory findings and physical examination were all normal. Preoperative computed tomography (CT) and magnetic resonance imaging revealed a tumor located in the neck of the pancreas and a tentative diagnosis of Castleman's disease or PGL was made. We resected the tumor by laparoscopic surgery. Postoperative pathology and immunohistochemistry confirmed that the tumor was a PGL. The patient was recovered well after a postoperative follow-up of 6 months. PGL located in the neck of the pancreas is difficult to be diagnosed accurately and clinicians have difficulties in distinguishing PGL from Castleman's disease, pancreatic neuroendocrine tumors and pancreatic primary tumor. Fifteen cases were listed to show the characters of PGL located in the pancreas and we also presented the difference among PGL, Castleman's disease and pancreatic neuroendocrine tumor. We showed our experience of treating such a rare tumor hoping to help clinicians correctly diagnose and treat PGL.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunsheng Qin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifang Zhang
- Department of Pathology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kangjie Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengtao Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wang W, Qin Y, Zhang H, Chen K, Liu Z, Zheng S. A rare case of retroperitoneal paraganglioma located in the neck of the pancreas: a case report and literature review. Gland Surg 2021; 10:1523-1531. [PMID: 33968704 DOI: 10.21037/gs-20-758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Paraganglioma (PGL) is an uncommon tumor located in the head, neck and abdomen. The majority of the tumor is benign and the patient has no obvious clinical symptoms. However, PGL located in the pancreas is rather rare and tends to mimic Castleman's disease, pancreatic neuroendocrine tumors and pancreatic primary tumor. Herein, we reported a patient with PGL that occurred in the neck of the pancreas. A 75-year-old Chinese female presented to our hospital with a complaint of upper abdomen pain for two weeks and she had good past health. The laboratory findings and physical examination were all normal. Preoperative computed tomography (CT) and magnetic resonance imaging revealed a tumor located in the neck of the pancreas and a tentative diagnosis of Castleman's disease or PGL was made. We resected the tumor by laparoscopic surgery. Postoperative pathology and immunohistochemistry confirmed that the tumor was a PGL. The patient was recovered well after a postoperative follow-up of 6 months. PGL located in the neck of the pancreas is difficult to be diagnosed accurately and clinicians have difficulties in distinguishing PGL from Castleman's disease, pancreatic neuroendocrine tumors and pancreatic primary tumor. Fifteen cases were listed to show the characters of PGL located in the pancreas and we also presented the difference among PGL, Castleman's disease and pancreatic neuroendocrine tumor. We showed our experience of treating such a rare tumor hoping to help clinicians correctly diagnose and treat PGL.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunsheng Qin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifang Zhang
- Department of Pathology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kangjie Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengtao Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Ku EJ, Kim KJ, Kim JH, Kim MK, Ahn CH, Lee KA, Lee SH, Lee YB, Park KH, Choi YM, Hong N, Hong AR, Kang SW, Park BK, Seong MW, Kim M, Jung KC, Jung CK, Cho YS, Paeng JC, Kim JH, Ryu OH, Rhee Y, Kim CH, Lee EJ. Diagnosis for Pheochromocytoma and Paraganglioma: A Joint Position Statement of the Korean Pheochromocytoma and Paraganglioma Task Force. Endocrinol Metab (Seoul) 2021; 36:322-338. [PMID: 33820394 PMCID: PMC8090459 DOI: 10.3803/enm.2020.908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 01/03/2023] Open
Abstract
Pheochromocytoma and paraganglioma (PPGLs) are rare catecholamine-secreting neuroendocrine tumors but can be life-threatening. Although most PPGLs are benign, approximately 10% have metastatic potential. Approximately 40% cases are reported as harboring germline mutations. Therefore, timely and accurate diagnosis of PPGLs is crucial. For more than 130 years, clinical, molecular, biochemical, radiological, and pathological investigations have been rapidly advanced in the field of PPGLs. However, performing diagnostic studies to localize lesions and detect metastatic potential can be still challenging and complicated. Furthermore, great progress on genetics has shifted the paradigm of genetic testing of PPGLs. The Korean PPGL task force team consisting of the Korean Endocrine Society, the Korean Surgical Society, the Korean Society of Nuclear Medicine, the Korean Society of Pathologists, and the Korean Society of Laboratory Medicine has developed this position statement focusing on the comprehensive and updated diagnosis for PPGLs.
Collapse
Affiliation(s)
- Eu Jeong Ku
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Seoul,
Korea
| | - Kyoung Jin Kim
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Jung Hee Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu,
Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju,
Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Kyeong Hye Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang,
Korea
| | - Yun Mi Choi
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong,
Korea
| | - Namki Hong
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| | - A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju,
Korea
| | - Sang-Wook Kang
- Thyroid-Endocrine Surgery Division, Department of Surgery, Yonsei University College of Medicine, Seoul,
Korea
| | - Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul,
Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Young Seok Cho
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Ohk-Hyun Ryu
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon,
Korea
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| | - Chong Hwa Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sejong General Hospital, Bucheon,
Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul,
Korea
| |
Collapse
|
8
|
Seo SH, Kim JH, Kim MJ, Cho SI, Kim SJ, Kang H, Shin CS, Park SS, Lee KE, Seong MW. Whole Exome Sequencing Identifies Novel Genetic Alterations in Patients with Pheochromocytoma/Paraganglioma. Endocrinol Metab (Seoul) 2020; 35:909-917. [PMID: 33397043 PMCID: PMC7803589 DOI: 10.3803/enm.2020.756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pheochromocytoma and paragangliomas (PPGL) are known as tumors with the highest level of heritability, approximately 30% of all cases. Clinical practice guidelines of PPGL recommend genetic testing for germline variants in all patients. In this study, we used whole exome sequencing to identify novel causative variants associated with PPGL to improve the detection of rare genetic variants in our cohort. METHODS Thirty-six tested negative for pathogenic variants in previous Sanger sequencing or targeted gene panel testing for PPGL underwent whole exome sequencing. Whole exome sequencing was performed using DNA samples enriched using TruSeq Custom Enrichment Kit and sequenced with MiSeq (Illumina Inc.). Sequencing alignment and variant calling were performed using SAMtools. RESULTS Among previously mutation undetected 36 patients, two likely pathogenic variants and 13 variants of uncertain significance (VUS) were detected in 32 pheochromocytoma-related genes. SDHA c.778G>A (p.Gly260Arg) was detected in a patient with head and neck paraganglioma, and KIF1B c.2787-2A>C in a patient with a bladder paraganglioma. Additionally, a likely pathogenic variant in BRCA2, VUS in TP53, and VUS in NFU1 were detected. CONCLUSION Exome sequencing further identified genetic alterations by 5.6% in previously mutation undetected patients in PPGL. Implementation of targeted gene sequencing consisted of extended genes of PPGL in routine clinical screening can support the level of comprehensive patient assessment.
Collapse
Affiliation(s)
- Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Seoul,
Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Man Jin Kim
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Sung Im Cho
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Su Jin Kim
- Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Hyein Kang
- Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Sung Sup Park
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Kyu Eun Lee
- Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Moon-Woo Seong
- Laboratory Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
9
|
Yang Y, Wang G, Lu H, Liu Y, Ning S, Luo F. Haemorrhagic retroperitoneal paraganglioma initially manifesting as acute abdomen: a rare case report and literature review. BMC Surg 2020; 20:304. [PMID: 33256692 PMCID: PMC7708907 DOI: 10.1186/s12893-020-00953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Paragangliomas (PGLs) are extremely rare neuroendocrine tumours arising from extra-adrenal chromaffin cells. PGLs are clinically rare, difficult to diagnose and usually require surgical intervention. PGLs mostly present catecholamine-related symptoms. We report a case of Acute abdomen as the initial manifestation of haemorrhagic retroperitoneal PGL. There has been only one similar case reported in literature. CASE PRESENTATION We present a unique case of a 52-year-old female with acute abdomen induced by haemorrhagic retroperitoneal PGL. The patient had a 5-h history of sudden onset of serve right lower quadrant abdominal pain radiating to the right flank and right lumbar region. Patient had classic symptoms of acute abdomen. Abdominal ultrasound revealed a large abdominal mass with a clear boundary. A Computed Tomography Angiography (CTA) of superior mesenteric artery was also performed to in the emergency department. The CTA demonstrated a large retroperitoneal mass measured 9.0 × 7.3 cm with higher density inside. A provisional diagnosis of retroperitoneal tumour with haemorrhage was made. The patient received intravenous fluids, broad-spectrum antibiotics and somatostatin. On the 3rd day of admission, her abdominal pain was slightly relieved, but haemoglobin decreased from 10.9 to 9.4 g/dL in 12 h suggesting that there might be active bleeding in the abdominal cavity. Thus, we performed a midline laparotomy for the patient. Haemorrhage was successfully stopped during operation. The retroperitoneal tumour with haemorrhage was completely removed. The abdominal pain was significantly relieved after surgery. The patient initially presented with acute abdomen instead of catecholamine-related symptoms. The diagnosis of retroperitoneal PGL with haemorrhage was finally confirmed by postoperative pathological and immunohistochemical results. The postoperative course was uneventful. At the 1-year follow-up visit, no tumour recurrence was observed by Single Photon Emission Computed Tomography. A literature review was performed to further understand and analyse the aforementioned disease. CONCLUSION Acute abdomen as the initial manifestation of haemorrhagic retroperitoneal paraganglioma is extremely rare. Abdominal Computed Tomography is essential to locate the lesion and differentiate between other causes of acute abdomen. PGLs are hypervascular tumours. We should be aware that ruptured retroperitoneal PGL with massive bleeding could be life threatening and require emergency laparotomy.
Collapse
Affiliation(s)
- Yanliang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Yangtze University, Hangkong Road, Jingzhou City, Hubei Province, People's Republic of China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, People's Republic of China
| | - Haofeng Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Yangtze University, Hangkong Road, Jingzhou City, Hubei Province, People's Republic of China
| | - Yaqing Liu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, People's Republic of China
| | - Shili Ning
- Department of General Surgery, The Second Hospital of Dalian Medical University, Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, People's Republic of China
| | - Fuwen Luo
- Department of General Surgery, The Second Hospital of Dalian Medical University, Zhongshan Road, Shahekou District, Dalian City, 116023, Liaoning Province, People's Republic of China.
| |
Collapse
|
10
|
Islam F, Pillai S, Gopalan V, Lam AKY. Identification of Novel Mutations and Expressions of EPAS1 in Phaeochromocytomas and Paragangliomas. Genes (Basel) 2020; 11:genes11111254. [PMID: 33114456 PMCID: PMC7693385 DOI: 10.3390/genes11111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) is an oxygen-sensitive component of the hypoxia-inducible factors (HIFs) having reported implications in many cancers by inducing a pseudo-hypoxic microenvironment. However, the molecular dysregulation and clinical significance of EPAS1 has never been investigated in depth in phaeochromocytomas/paragangliomas. This study aims to identify EPAS1 mutations and alterations in DNA copy number, mRNA and protein expression in patients with phaeochromocytomas/paragangliomas. The association of molecular dysregulations of EPAS1 with clinicopathological factors in phaeochromocytomas and paragangliomas were also analysed. High-resolution melt-curve analysis followed by Sanger sequencing was used to detect mutations in EPAS1. EPAS1 DNA number changes and mRNA expressions were examined by polymerase chain reaction (PCR). Immunofluorescence assay was used to study EPAS1 protein expression. In phaeochromocytomas, 12% (n = 7/57) of patients had mutations in the EPAS1 sequence, which includes two novel mutations (c.1091A>T; p.Lys364Met and c.1129A>T; p.Ser377Cys). Contrastingly, in paragangliomas, 7% (n = 1/14) of patients had EPAS1 mutations and only the c.1091A>T; p.Lys364Met mutation was detected. In silico analysis revealed that the p.Lys364Met mutation has pathological potential based on the functionality of the protein, whereas the p.Ser377Cys mutation was predicted to be neutral or tolerated. The majority of the patients had EPAS1 DNA amplification (79%; n = 56/71) and 53% (n = 24/45) patients shown mRNA overexpression. Most of the patients with EPAS1 mutations exhibited aberrant DNA changes, mRNA and protein overexpression. In addition, these alterations of EPAS1 were associated with tumour weight and location. Thus, the molecular dysregulation of EPAS1 could play crucial roles in the pathogenesis of phaeochromocytomas and paragangliomas.
Collapse
Affiliation(s)
- Farhadul Islam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suja Pillai
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Gold Coast, QLD 4222, Australia;
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Gold Coast, QLD 4222, Australia;
- Correspondence: ; Tel.: +61-7-5678-0718; Fax: +61-7-5678-0708
| |
Collapse
|
11
|
Yamazaki Y, Gao X, Pecori A, Nakamura Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Satoh F, Sasano H. Recent Advances in Histopathological and Molecular Diagnosis in Pheochromocytoma and Paraganglioma: Challenges for Predicting Metastasis in Individual Patients. Front Endocrinol (Lausanne) 2020; 11:587769. [PMID: 33193100 PMCID: PMC7652733 DOI: 10.3389/fendo.2020.587769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PHEO/PGL) are rare but occasionally life-threatening neoplasms, and are potentially malignant according to WHO classification in 2017. However, it is also well known that histopathological risk stratification to predict clinical outcome has not yet been established. The first histopathological diagnostic algorithm for PHEO, "PASS", was proposed in 2002 by Thompson et al. Another algorithm, GAPP, was then proposed by Kimura et al. in 2014. However, neither algorithm has necessarily been regarded a 'gold standard' for predicting post-operative clinical behavior of tumors. This is because the histopathological features of PHEO/PGL are rather diverse and independent of their hormonal activities, as well as the clinical course of patients. On the other hand, recent developments in wide-scale genetic analysis using next-generation sequencing have revealed the molecular characteristics of pheochromocytomas and paragangliomas. More than 30%-40% of PHEO/PGL are reported to be associated with hereditary genetic abnormalities involving > 20 genes, including SDHXs, RET, VHL, NF1, TMEM127, MAX, and others. Such genetic alterations are mainly involved in the pathogenesis of pseudohypoxia, Wnt, and kinase signaling, and other intracellular signaling cascades. In addition, recurrent somatic mutations are frequently detected and overlapped with the presence of genetic alterations associated with hereditary diseases. In addition, therapeutic strategies specifically targeting such genetic abnormalities have been proposed, but they are not clinically applicable at this time. Therefore, we herein review recent advances in relevant studies, including histopathological and molecular analyses, to summarize the current status of potential prognostic factors in patients with PHEO/PGL.
Collapse
Affiliation(s)
- Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alessio Pecori
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Hironobu Sasano,
| |
Collapse
|
12
|
Ben Aim L, Pigny P, Castro-Vega LJ, Buffet A, Amar L, Bertherat J, Drui D, Guilhem I, Baudin E, Lussey-Lepoutre C, Corsini C, Chabrier G, Briet C, Faivre L, Cardot-Bauters C, Favier J, Gimenez-Roqueplo AP, Burnichon N. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J Med Genet 2019; 56:513-520. [DOI: 10.1136/jmedgenet-2018-105714] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 01/29/2023]
Abstract
BackgroundKnowing the genetic status of patients affected by paragangliomas and pheochromocytomas (PPGL) is important for the guidance of their management and their relatives. Our objective was to improve the diagnostic performances of PPGL genetic testing by next-generation sequencing (NGS).MethodsWe developed a custom multigene panel, which includes 17 PPGL genes and is compatible with both germline and tumour DNA screening. The NGS assay was first validated in a retrospective cohort of 201 frozen tumour DNAs and then applied prospectively to 623 DNAs extracted from leucocytes, frozen or paraffin-embedded PPGL tumours.ResultsIn the retrospective cohort, the sensitivity of the NGS assay was evaluated at 100% for point and indels mutations and 86% for large rearrangements. The mutation rate was re-evaluated from 65% (132/202) to 78% (156/201) after NGS analysis. In the prospective cohort, NGS detected not only germline and somatic mutations but also co-occurring variants and mosaicism. A mutation was identified in 74% of patients for whom both germline and tumour DNA were available.ConclusionThe analysis of 824 DNAs from patients with PPGL demonstrated that NGS assay significantly improves the performances of PPGL genetic testing compared with conventional methods, increasing the rate of identified mutations and identifying rare genetic mechanisms.
Collapse
|
13
|
Alekseyev YO, Fazeli R, Yang S, Basran R, Maher T, Miller NS, Remick D. A Next-Generation Sequencing Primer-How Does It Work and What Can It Do? Acad Pathol 2018; 5:2374289518766521. [PMID: 29761157 PMCID: PMC5944141 DOI: 10.1177/2374289518766521] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/28/2022] Open
Abstract
Next-generation sequencing refers to a high-throughput technology that determines the nucleic acid sequences and identifies variants in a sample. The technology has been introduced into clinical laboratory testing and produces test results for precision medicine. Since next-generation sequencing is relatively new, graduate students, medical students, pathology residents, and other physicians may benefit from a primer to provide a foundation about basic next-generation sequencing methods and applications, as well as specific examples where it has had diagnostic and prognostic utility. Next-generation sequencing technology grew out of advances in multiple fields to produce a sophisticated laboratory test with tremendous potential. Next-generation sequencing may be used in the clinical setting to look for specific genetic alterations in patients with cancer, diagnose inherited conditions such as cystic fibrosis, and detect and profile microbial organisms. This primer will review DNA sequencing technology, the commercialization of next-generation sequencing, and clinical uses of next-generation sequencing. Specific applications where next-generation sequencing has demonstrated utility in oncology are provided.
Collapse
Affiliation(s)
- Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Roghayeh Fazeli
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Shi Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Raveen Basran
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Thomas Maher
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Nancy S Miller
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Daniel Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| |
Collapse
|
14
|
DNA Genome Sequencing in Esophageal Adenocarcinoma. Methods Mol Biol 2018. [PMID: 29600374 DOI: 10.1007/978-1-4939-7734-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Next-generation sequencing refers to the high-throughput DNA sequencing technologies, which are capable of sequencing large numbers of different DNA sequences in a single/parallel reaction. It is a powerful tool to identify inherited and acquired genetic alterations associated with the development of esophageal adenocarcinoma. Whole-genome sequencing is the most comprehensive but expensive, whereas whole-exome sequencing is cost-effective but it only works for the known genes. Thus, second-generation sequencing methods can provide a complete picture of the esophageal adenocarcinoma genome by detecting and discovering different type of alterations in the cancer. This would help in diagnostics and will further help in developing personalized medicine in esophageal adenocarcinoma.
Collapse
|
15
|
Abstract
The von Hippel–Lindau (VHL) gene is a two-hit tumor suppressor gene and is linked to the development of the most common form of kidney cancer, clear cell renal carcinoma; blood vessel tumors of the retina, cerebellum, and spinal cord called hemangioblastomas; and tumors of the sympathoadrenal nervous system called paragangliomas. The VHL gene product, pVHL, is the substrate recognition subunit of a cullin-dependent ubiquitin ligase that targets the α subunits of hypoxia-inducible factor (HIF) for destruction when oxygen is plentiful. Mounting evidence implicates HIF2 in the pathogenesis of pVHL-defective tumors and has provided a conceptual foundation for the development of drugs to treat them that inhibit HIF2-responsive gene products such as VEGF and, more recently, HIF2 itself. pVHL has additional, noncanonical functions that are cancer relevant, including roles related to the primary cilium, chromosome stability, extracellular matrix formation, and survival signaling.
Collapse
Affiliation(s)
- William G. Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
16
|
Abstract
The fourth edition of the World Health Organization (WHO) classification of endocrine tumours contains substantial new findings for the adrenal tumours. The tumours are presented in two chapters labelled as "Tumours of the adrenal cortex" and "Tumours of the adrenal medulla and extra-adrenal paraganglia." Tumours of the adrenal cortex are classified as cortical carcinoma, cortical adenoma, sex cord stromal tumours, adenomatoid tumour, mesenchymal and stromal tumours (myelolipoma and schwannoma), haematological tumours, and secondary tumours. Amongst them, schwannoma and haematological tumours are newly documented. The major updates in adrenal cortical lesions are noted in the genetics of the cortical carcinoma and cortical adenoma based on the data from The Cancer Genome Atlas (TCGA). Also, a system for differentiation of oncocytoma from oncocytic cortical carcinoma is adopted. Tumours of the adrenal medulla and extra-adrenal paraganglia comprise pheochromocytoma, paraganglioma (head and neck paraganglioma and sympathetic paraganglioma), neuroblastic tumours (neuroblastoma, nodular ganglioneuroblastoma, intermixed ganglioneuroblastoma, and ganglioneuroma), composite pheochromocytoma, and composite paraganglioma. In this group, neuroblastic tumours are newly included in the classification. The clinical features, histology, associated pathologies, genetics, and predictive factors of pheochromocytoma and paraganglioma are the main changes introduced in this chapter of WHO classification of endocrine tumours. The term "metastatic pheochromocytoma/paraganglioma" is used to replace "malignant pheochromocytoma/paraganglioma." Also, composite pheochromocytoma and composite paraganglioma are now documented in separate sections instead of one. Overall, the new classification incorporated new data on pathology, clinical behaviour, and genetics of the adrenal tumours that are important for current management of patients with these tumours.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia.
| |
Collapse
|
17
|
Pillai S, Gopalan V, Lam AKY. Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Crit Rev Oncol Hematol 2017; 116:58-67. [DOI: 10.1016/j.critrevonc.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
|
18
|
Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 2017; 9:216-237. [PMID: 28748451 PMCID: PMC5818369 DOI: 10.1007/s13238-017-0451-1] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.
Collapse
Affiliation(s)
- Nicole M Anderson
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104-6160, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick Mucka
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Joseph G Kern
- Program in Biomedical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
19
|
Pillai S, Lo CY, Liew V, Lalloz M, Smith RA, Gopalan V, Lam AKY. MicroRNA 183 family profiles in pheochromocytomas are related to clinical parameters and SDHB expression. Hum Pathol 2017; 64:91-97. [PMID: 28412207 DOI: 10.1016/j.humpath.2017.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 11/25/2022]
Abstract
This study aims to examine the expression profiles of the miR-183 cluster (miR-96/182/183) in pheochromocytoma. Pheochromocytoma tissues were prospectively collected from 50 patients with pheochromocytoma. Expression of miR-183 cluster members and SDHB protein expression were analyzed in these tissues by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. The expression of miR-183 cluster members in pheochromocytomas was correlated with the clinical and pathological parameters of these patients. The expression levels of miR-183 cluster members were predominantly downregulated or deleted in pheochromocytoma. Low expression or deletion of miR-96 was predominantly noted in younger patients with pheochromocytoma (<50 years, P=.01). Female patients in the study group showed marked deletion of miR-182 (P=.05). Deletion of the cluster was also associated with SDHB protein expression in pheochromocytoma. Moreover, patients with low miR-183 cluster expression had a slightly better survival rate when compared with patients with high expression. To conclude, the findings indicate a role for miR-183 cluster members in the pathogenesis and clinical progression of pheochromocytoma.
Collapse
Affiliation(s)
- Suja Pillai
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Chung Y Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Victor Liew
- Department of Surgery, Gold Coast Private Hospital, Gold Coast, Southport, Q4215, Australia
| | - Minella Lalloz
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Kelvin Grove, Q4059, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Q4222, Australia.
| |
Collapse
|