1
|
Martinez-Bernabe T, Pons DG, Oliver J, Sastre-Serra J. Oxidative Phosphorylation as a Predictive Biomarker of Oxaliplatin Response in Colorectal Cancer. Biomolecules 2024; 14:1359. [PMID: 39595536 PMCID: PMC11591675 DOI: 10.3390/biom14111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxaliplatin is successfully used on advanced colorectal cancer to eradicate micro-metastasis, whereas its benefits in the early stages of colorectal cancer remains controversial since approximately 30% of patients experience unexpected relapses. Herein, we evaluate the efficacy of oxidative phosphorylation as a predictive biomarker of oxaliplatin response in colorectal cancer. We found that non-responding patients exhibit low oxidative phosphorylation activity, suggesting a poor prognosis. To reach this conclusion, we analyzed patient samples of individuals treated with oxaliplatin from the GSE83129 dataset, and a set of datasets validated using ROCplotter, selecting them based on their response to the drug. By analyzing multiple oxaliplatin-resistant and -sensitive cell lines, we identified oxidative phosphorylation KEGG pathways as a valuable predictive biomarker of oxaliplatin response with a high area under the curve (AUC = 0.843). Additionally, some oxidative phosphorylation-related biomarkers were validated in primary- and metastatic-derived tumorspheres, confirming the results obtained in silico. The low expression of these biomarkers is clinically relevant, indicating poor prognosis with decreased overall and relapse-free survival. This study proposes using oxidative phosphorylation-related protein expression levels as a predictor of responses to oxaliplatin-based treatments to prevent relapse and enable a more personalized therapy approach. Our results underscore the value of oxidative phosphorylation as a reliable marker for predicting the response to oxaliplatin treatment in colorectal cancer.
Collapse
Affiliation(s)
- Toni Martinez-Bernabe
- Gruop Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (D.G.P.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Daniel G. Pons
- Gruop Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (D.G.P.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jordi Oliver
- Gruop Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (D.G.P.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Sastre-Serra
- Gruop Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (D.G.P.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Jamai D, Gargouri R, Selmi B, Khabir A. ERCC1 and MGMT Methylation as a Predictive Marker of Relapse and FOLFOX Response in Colorectal Cancer Patients from South Tunisia. Genes (Basel) 2023; 14:1467. [PMID: 37510370 PMCID: PMC10379058 DOI: 10.3390/genes14071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Genetic and epigenetic modifications present a major cause of relapse and treatment failure in colorectal cancer. This study aims to appreciate the prognostic and predictive value of ERRC1 and MGMT methylation. We also studied the prognostic impact of the ERCC1 rs11615 polymorphism as well as its expression. Methylation profiles of ERCC1 and MGMT were tested by methylation-specific PCR. A polymorphism of ERCC1 was studied using PCR-RFLP and its expression was examined by immunohistochemistry. ERCC1 was methylated in 44.6% of colorectal adenocarcinoma while MGMT was methylated in 69% of cases. MGMT methylation was strongly associated with lymph node metastasis, lymph invasion, venous invasion, perineural invasion, distant metastasis and relapse. Patients with methylation of both genes were more likely to have a poor prognosis and display chemoresistance. IHC analysis revealed that ERCC1 staining was noted in 52.8% of colorectal adenocarcinoma and inversely related to distant metastasis and cancer recurrence. Kaplan Meier analysis revealed that the worst overall survival was significantly associated with ERCC1 and MGMT methylation while decreased ERCC1 expression and T/T genotype exhibited the best overall survival. The methylation of MGMT, alone or combined with ERCC1, is predictive for poor prognosis, short overall survival and chemotherapy response in colorectal cancer.
Collapse
Affiliation(s)
- Dhouha Jamai
- Research Laboratory of Bioresources, Integrative Biology and Valorization LR14ES06, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haaadded, BP 74, Monastir 5000, Tunisia
- Department of Pathology, Habib Bourguiba University Hospital, Medenine 4100, Tunisia
| | - Raja Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Biotechnology Center, University of Sfax, Avenue Sidi Mansour, Sfax 3018, Tunisia
| | - Boulbaba Selmi
- Research Laboratory of Bioresources, Integrative Biology and Valorization LR14ES06, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haaadded, BP 74, Monastir 5000, Tunisia
| | - Abdelmajid Khabir
- Department of Pathology, Habib Bourguiba University Hospital, Medenine 4100, Tunisia
| |
Collapse
|
3
|
Du P, Li G, Wu L, Huang M. Perspectives of ERCC1 in early-stage and advanced cervical cancer: From experiments to clinical applications. Front Immunol 2023; 13:1065379. [PMID: 36713431 PMCID: PMC9875293 DOI: 10.3389/fimmu.2022.1065379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical cancer is a public health problem of extensive clinical importance. Excision repair cross-complementation group 1 (ERCC1) was found to be a promising biomarker of cervical cancer over the years. At present, there is no relevant review article that summarizes such evidence. In this review, nineteen eligible studies were included for evaluation and data extraction. Based on the data from clinical and experimental studies, ERCC1 plays a key role in the progression of carcinoma of the uterine cervix and the therapeutic response of chemoradiotherapy. The majority of the included studies (13/19, 68%) suggested that ERCC1 played a pro-oncogenic role in both early-stage and advanced cervical cancer. High expression of ERCC1 was found to be associated with the poor survival rates of the patients. ERCC1 polymorphism analyses demonstrated that ERCC1 might be a useful tool for predicting the risk of cervical cancer and the treatment-related toxicities. Experimental studies indicated that the biological effects exerted by ERCC1 in cervical cancer might be mediated by its associated genes and affected signaling pathways (i.e., XPF, TUBB3, and. To move towards clinical applications by targeting ERCC1 in cervical cancer, more clinical, in-vitro, and in-vivo investigations are still warranted in the future.
Collapse
|
4
|
CHK2 activation contributes to the development of oxaliplatin resistance in colorectal cancer. Br J Cancer 2022; 127:1615-1628. [PMID: 35999268 PMCID: PMC9596403 DOI: 10.1038/s41416-022-01946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the most common cancer type, causes high morbidity and mortality. Patients who develop drug resistance to oxaliplatin-based regimens have short overall survival. Thus, identifying molecules involved in the development of oxaliplatin resistance is critical for designing therapeutic strategies. METHODS A proteomic screen was performed to reveal altered protein kinase phosphorylation in oxaliplatin-resistant (OR) CRC tumour spheroids. The function of CHK2 was characterised using several biochemical techniques and evident using in vitro cell and in vivo tumour models. RESULTS We revealed that the level of phospho-CHK2(Thr68) was elevated in OR CRC cells and in ~30% of tumour samples from patients with OR CRC. We demonstrated that oxaliplatin activated several phosphatidylinositol 3-kinase-related kinases (PIKKs) and CHK2 downstream effectors and enhanced CHK2/PARP1 interaction to facilitate DNA repair. A phosphorylation mimicking CHK2 mutant, CHK2T68D, but not a kinase-dead CHK2 mutant, CHK2D347A, promoted DNA repair, the CHK2/PARP1 interaction, and cell growth in the presence of oxaliplatin. Finally, we showed that a CHK2 inhibitor, BML-277, reduced protein poly(ADP-ribosyl)ation (PARylation), FANCD2 monoubiquitination, homologous recombination and OR CRC cell growth in vitro and in vivo. CONCLUSION Our findings suggest that CHK2 activity is critical for modulating oxaliplatin response and that CHK2 is a potential therapeutic target for OR CRC.
Collapse
|
5
|
Association between ERCC1 Gene Polymorphism (rs11615) and Colorectal Cancer Susceptibility: A Meta-Analysis of Medical Image Fusion and Safety Applications. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9988513. [PMID: 36277013 PMCID: PMC9586779 DOI: 10.1155/2022/9988513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is a malignant tumor of the colorectal mucosa epithelial tissue transformed. The fusion of data for medical imaging has become a central issue in such biomedical applications as image-guided surgery and radiotherapy. Currently, CRC has been one of the most threatening tumors affecting people's health worldwide. The excision repair cross-complementation group 1 (ERCC1) is a key enzyme for nucleotide excision repair (NER). Emerging epidemiological studies have indicated that the presence of colorectal cancer (CRC) may be relevant to the ERCC1 rs11615 genetic polymorphism. However, the results of ERCC1 rs11615 on CRC in these studies are controversial. We searched PubMed, Web of Science, Embase, CNKI, and CBM databases for the effects of ERCC1 rs11615 variant on CRC development. There was no meta-analysis focused on the diagnosis of colorectal cancer with ERCC1 rs11615 variant. We creatively carried out a meta-analysis of nine case-control studies and used Stata (version 12.0) software to integrate the pooled odds ratios (ORs) corresponding to a 95% confidence interval (CI) of overall and subgroup analysis. Our results suggest that a significant correlation was observed between rs11615 and the susceptibility of CRC OR 95% CI = 1.13 (1.04-1.23) under an allele genetic model and OR 95% CI = 1.14 (1.01-1.30) under a dominant genetic model for overall CRC. Significant statistical difference was also noted in Asians rather than Caucasians based on the ethnicity subgroups. These results suggested that there is a certain association between rs11615 and the susceptibility of colorectal cancer in the Asian populations.
Collapse
|
6
|
Hulshof EC, Lim L, de Hingh IHJT, Gelderblom H, Guchelaar HJ, Deenen MJ. Genetic Variants in DNA Repair Pathways as Potential Biomarkers in Predicting Treatment Outcome of Intraperitoneal Chemotherapy in Patients With Colorectal Peritoneal Metastasis: A Systematic Review. Front Pharmacol 2020; 11:577968. [PMID: 33117169 PMCID: PMC7575928 DOI: 10.3389/fphar.2020.577968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background The introduction of cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) with either oxaliplatin or mitomycin C for patients with colorectal peritoneal metastasis (CPM) has resulted in a major increase in overall survival. Nonetheless, despite critical patient selection, the majority of patients will develop recurrent disease within one year following CRS + HIPEC. Therefore, improvement of patient and treatment selection is needed and may be achieved by the incorporation of genetic biomarkers. This systematic review aims to provide an overview of genetic biomarkers in the DNA repair pathway that are potentially predictive for treatment outcome of patients with colorectal peritoneal metastases treated with CRS + HIPEC with oxaliplatin or mitomycin C. Methods A systematic review was conducted according to the PRISMA guidelines. Given the limited number of genetic association studies of intraperitoneal mitomycin C and oxaliplatin in patients with CPM, we expanded the review and extrapolated the data from biomarker studies conducted in colorectal cancer patients treated with systemic mitomycin C– and oxaliplatin-based chemotherapy. Results In total, 43 papers were included in this review. No study reported potential pharmacogenomic biomarkers in patients with colorectal cancer undergoing mitomycin C–based chemotherapy. For oxaliplatin-based chemotherapy, a total of 26 genetic biomarkers within 14 genes were identified that were significantly associated with treatment outcome. The most promising genetic biomarkers were ERCC1 rs11615, XPC rs1043953, XPD rs13181, XPG rs17655, MNAT rs3783819/rs973063/rs4151330, MMR status, ATM protein expression, HIC1 tandem repeat D17S5, and PIN1 rs2233678. Conclusion Several genetic biomarkers have proven predictive value for the treatment outcome of systemically administered oxaliplatin. By extrapolation, these genetic biomarkers may also be predictive for the efficacy of intraperitoneal oxaliplatin. This should be the subject of further investigation.
Collapse
Affiliation(s)
- Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Lifani Lim
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Ignace H J T de Hingh
- Department of Surgical Oncology, Catharina Hospital, Eindhoven, Netherlands.,GROW, School for Oncology and Development Biology, Maastricht University, Maastricht, Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Network for Personalized Therapeutics, Leiden, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
8
|
Excision repair cross-complementing group-1 (ERCC1) induction kinetics and polymorphism are markers of inferior outcome in patients with colorectal cancer treated with oxaliplatin. Oncotarget 2019; 10:5510-5522. [PMID: 31565185 PMCID: PMC6756860 DOI: 10.18632/oncotarget.27140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background ERCC1, a component of nucleotide excision repair pathway, is known to repair DNA breaks induced by platinum drugs. We sought to ascertain if ERCC1 expression dynamics and a single nucleotide polymorphism (SNP) rs11615 are biomarkers of sensitivity to oxaliplatin therapy in patients with colorectal cancer (CRC). Methods Western blot and qPCR for ERCC1 expression was performed from PBMCs isolated from patients receiving oxaliplatin-based therapy at specified timepoints. DNA was also isolated from 59 biorepository specimens for SNP analysis. Clinical benefit was determined using progression free survival (PFS) for metastatic CRC. Results ERCC1 was induced in PBMC in response to oxaliplatin in 13/25 patients with mCRC (52%). Median PFS with ERCC1 induction was 190d compared to 237d in non-induced patients (HR 2.35, CI 1.005-5.479; p=0.0182). ERCC1 rs11615 SNP analysis revealed that 43.3% harbored C/C, 41.2%-T/C and 15.5%-T/T genotype. Median PFS was significantly lower with C/C or T/C (211 and 196d) compared to T/T (590d; p=0.0310). Conclusions ERCC1 was induced in a sub-population of patients undergoing oxaliplatin treatment, which was associated with poorer outcome, suggesting this could serve as a marker of oxaliplatin response. C/C or C/T genotype in ERCC1 rs11615 locus decreased benefit from oxaliplatin.
Collapse
|
9
|
Yau TO. Precision treatment in colorectal cancer: Now and the future. JGH OPEN 2019; 3:361-369. [PMID: 31633039 PMCID: PMC6788378 DOI: 10.1002/jgh3.12153] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
Until recently, a one‐drug‐fits‐all model was applied to every patient diagnosed with the same condition. But not every condition is the same, and this has led to many cases of ineffective treatment. Pharmacogenetics is increasingly used to stratify patients for precision medicine treatments, for instance, the UGT1A1*28 polymorphism as a dosage indicator for the use of irinotecan as well as epidermal growth factor receptor (EGFR) immunohistochemistry and KRAS Proto‐Oncogene (KRAS) exon 2 mutation tests for determining the likelihood of treatment response to cetuximab or panitumumab treatment in metastatic colorectal cancer (CRC). The other molecular subtypes, such as KRAS exon 3/4, B‐Raf Proto‐Oncogene, NRAF, PIK3CA, and PETN, were also reported as potential new pharmacogenetic targets for the current and the newly discovered anticancer drugs. In addition to next‐generation sequencing (NGS), primary tumor cells for in vivo and in vitro drug screening, imaging biomarker 3′‐Deoxy‐3′‐18F‐fluorothymidine positron emission tomography, and circulating tumor DNA (ctDNA) detection methods are being developed and may represent the future direction of precision medicine. This review will discuss the current environment of precision medicine, including clinically approved targeted therapies, the latest potential therapeutic agents, and the ongoing pharmacogenetic trials for CRC patients.
Collapse
Affiliation(s)
- Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology Nottingham Trent University Nottingham UK
| |
Collapse
|
10
|
Prognostic Value of Excision Repair Cross-Complementing mRNA Expression in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6204684. [PMID: 30417012 PMCID: PMC6207904 DOI: 10.1155/2018/6204684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Except for excision repair cross-complementing 1 (ERCC1), mRNA expression of the remaining ERCC genes has not been investigated in the prognosis of gastric cancer (GC). The present study aimed to explore the mRNA expression and prognostic values of each member of the ERCC family in GC patients by using the Kaplan–Meier (KM) plotter tool. The details of each ERCC family member were entered into a database and GC patients were separated into high and low expression to draw survival plots using the KM plotter. In the present study, we observed that high expression of ERCC1 mRNA was significantly associated with longer overall survival (OS) for all GC patients (hazard ratio [HR]=0.77, 95% confidence intervals [CI]=0.63–0.95, P=0.016) compared with low expression. High expression of ERCC4 and ERCC6 mRNA indicated a worse OS for all GC patients (HR=1.28, 95% CI=1.02–1.6, P=0.035 and HR=1.25, 95% CI=1.02–1.54, P=0.029, respectively) and especially for patients with intestinal-type GC (HR=1.87, 95% CI=1.26–2.79, P=0.0018 and HR=1.62, 95% CI=1.04–2.54, P=0.033, respectively). High ERCC8 mRNA expression indicated a worse OS for all GC patients (HR=1.34, 95% CI=1.02–1.76, P=0.034) and especially for patients with diffuse-type GC (HR=2.25, 95% CI=1.36–3.75, P=0.0013). In conclusion, our findings indicate that ERCC4, ERCC6, and ERCC8 may be potential biomarkers for GC prognosis and may serve as potential therapeutic targets for GC. However, these findings still need further verification.
Collapse
|
11
|
Laporte GA, Leguisamo NM, Kalil AN, Saffi J. Clinical importance of DNA repair in sporadic colorectal cancer. Crit Rev Oncol Hematol 2018; 126:168-185. [PMID: 29759559 DOI: 10.1016/j.critrevonc.2018.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third major cause of cancer-related deaths worldwide. However, despite the scientific efforts to provide a molecular classification to improve CRC clinical practice management, prognosis and therapeutic decision are still strongly dependent on the TNM staging system. Mismatch repair system deficiencies can occur in many organs, but it is mainly a hallmark of CRC influencing clinical outcomes and response to therapy. This review will discuss the effect of the modulation of other DNA repair pathways (direct, excision and double strand break repairs) in the clinical and pathological aspects of colorectal cancer and its potential as prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Gustavo A Laporte
- Surgical Oncology Service, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia M Leguisamo
- Institute of Cardiology/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Antonio N Kalil
- Surgical Oncology Service, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9651320. [PMID: 29568775 PMCID: PMC5820669 DOI: 10.1155/2018/9651320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Background Nucleotide excision repair (NER) plays a critical role in maintaining genome integrity. This study aimed to investigate the expression of NER genes and their associations with colorectal cancer (CRC) development. Method Expressions of NER genes in CRC and normal tissues were analysed by ONCOMINE. The Cancer Genome Atlas (TCGA) data were downloaded to explore relationship of NER expression with clinicopathological parameters and survival of CRC. Results ERCC1, ERCC2, ERCC5, and DDB2 were upregulated while ERCC4 was downregulated in CRC. For colon cancer, high ERCC3 expression was related to better T stage; ERCC5 expression indicated deeper T stage and distant metastasis; DDB2 expression suggested earlier TNM stage. For rectal cancer, ERCC2 expression correlated with favourable T stage; XPA expression predicted worse TNM stage. ERCC2 expression was associated with worse overall survival (OS) in colon cancer (HR = 1.53, P = 0.043). Colon cancer patients with high ERCC4 expression showed favorable OS in males (HR = 0.54, P = 0.035). High XPC expression demonstrated decreased death hazards in rectal cancer (HR = 0.40, P = 0.026). Conclusion ERCC1, ERCC2, ERCC4, ERCC5, and DDB2 were differently expressed in CRC and normal tissues; ERCC2, ERCC3, ERCC5, XPA, and DDB2 correlated with clinicopathological parameters of CRC, while ERCC2, ERCC4, and XPC might predict CRC prognosis.
Collapse
|
13
|
Zhao M, Li S, Zhou L, Shen Q, Zhu H, Zhu X. Prognostic values of excision repair cross-complementing genes mRNA expression in ovarian cancer patients. Life Sci 2017; 194:34-39. [PMID: 29247747 DOI: 10.1016/j.lfs.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Excision repair cross-complementing (ERCC) genes, key components of the nucleotide excision repair pathway, are regarded as crucial factors for DNA repair capacity. Previous studies have investigated prognostic values of ERCC genes in a number of malignancies. However, the relationship between ERCC genes and prognosis of ovarian cancer patients remains controversial. Therefore, in the current study, we systematically analyze the prognostic values of ERCC genes in ovarian cancer by the Kaplan-Meier plotter, which includes updated gene expression data and survival information of 1656 ovarian cancer patients. Our results showed that high expression of ERCC1 and ERCC8 mRNA was related to a worse overall survival among ovarian cancer patients, especially in late stage and poor differentiation serous ovarian patients. Increased ERCC4 mRNA expression indicated a better overall survival among serous ovarian cancer patients. The other ERCC genes were uncorrelated with prognosis in ovarian cancer. These results indicate that some ERCC genes have critical prognostic values in ovarian cancer.
Collapse
Affiliation(s)
- Menghuang Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saisai Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|