1
|
Bruscoli S, Riccardi C, Ronchetti S. GILZ as a Regulator of Cell Fate and Inflammation. Cells 2021; 11:cells11010122. [PMID: 35011684 PMCID: PMC8750894 DOI: 10.3390/cells11010122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
One of the human body’s initial responses to stress is the adrenal response, involving the release of mediators that include adrenaline and glucocorticoids (GC). GC are involved in controlling the inflammatory and immune response mechanisms. Of these, the molecular mechanisms that contribute to anti-inflammatory effects warrant more investigation. Previously, we found that GC induced GILZ (glucocorticoid-induced leucine zipper) quickly and widely in thymocytes, T lymphocytes, and other leukocytes. GILZ regulates the activation of cells and is an essential mediator of endogenous GC and the majority of GC anti-inflammatory effects. Further research in this regard could lead to the development of an anti-inflammatory treatment that yields the therapeutic outcomes of GC but without their characteristic adverse effects. Here, we examine the mechanisms of GILZ in the context of GC. Specifically, we review its role in the proliferation and differentiation of cells and in apoptosis. We also examine its involvement in immune cells (macrophages, neutrophils, dendritic cells, T and B lymphocytes), and in non-immune cells, including cancer cells. In conclusion, GILZ is an anti-inflammatory molecule that could mediate the immunomodulatory activities of GC, with less adverse effects, and could be a target molecule for designing new therapies to treat inflammatory diseases.
Collapse
|
2
|
Glucocorticoid-Induced Leucine Zipper (GILZ) in Cardiovascular Health and Disease. Cells 2021; 10:cells10082155. [PMID: 34440924 PMCID: PMC8394287 DOI: 10.3390/cells10082155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids (GCs) are essential in regulating functions and homeostasis in many biological systems and are extensively used to treat a variety of conditions associated with immune/inflammatory processes. GCs are among the most powerful drugs for the treatment of autoimmune and inflammatory diseases, but their long-term usage is limited by severe adverse effects. For this reason, to envision new therapies devoid of typical GC side effects, research has focused on expanding the knowledge of cellular and molecular effects of GCs. GC-induced leucine zipper (GILZ) is a GC-target protein shown to mediate several actions of GCs, including inhibition of the NF-κB and MAPK pathways. GILZ expression is not restricted to immune cells, and it has been shown to play a regulatory role in many organs and tissues, including the cardiovascular system. Research on the role of GILZ on endothelial cells has demonstrated its ability to modulate the inflammatory cascade, resulting in a downregulation of cytokines, chemokines, and cellular adhesion molecules. GILZ also has the capacity to protect myocardial cells, as its deletion makes the heart, after a deleterious stimulus, more susceptible to apoptosis, immune cell infiltration, hypertrophy, and impaired function. Despite these advances, we have only just begun to appreciate the relevance of GILZ in cardiovascular homeostasis and dysfunction. This review summarizes the current understanding of the role of GILZ in modulating biological processes relevant to cardiovascular biology.
Collapse
|
3
|
Nataraja C, Dankers W, Flynn J, Lee JPW, Zhu W, Vincent FB, Gearing LJ, Ooi J, Pervin M, Cristofaro MA, Sherlock R, Hasnat MA, Harris J, Morand EF, Jones SA. GILZ Regulates the Expression of Pro-Inflammatory Cytokines and Protects Against End-Organ Damage in a Model of Lupus. Front Immunol 2021; 12:652800. [PMID: 33889157 PMCID: PMC8056982 DOI: 10.3389/fimmu.2021.652800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) mimics many of the anti-inflammatory effects of glucocorticoids, suggesting it as a point of therapeutic intervention that could bypass GC adverse effects. We previously reported that GILZ down-regulation is a feature of human SLE, and loss of GILZ permits the development of autoantibodies and lupus-like autoimmunity in mice. To further query the contribution of GILZ to protection against autoimmune inflammation, we studied the development of the lupus phenotype in Lyn-deficient (Lyn-/-) mice in which GILZ expression was genetically ablated. In Lyn-/- mice, splenomegaly, glomerulonephritis, anti-dsDNA antibody titres and cytokine expression were exacerbated by GILZ deficiency, while other autoantibody titres and glomerular immune complex deposition were unaffected. Likewise, in patients with SLE, GILZ was inversely correlated with IL23A, and in SLE patients not taking glucocorticoids, GILZ was also inversely correlated with BAFF and IL18. This suggests that at the onset of autoimmunity, GILZ protects against tissue injury by modulating pro-inflammatory pathways, downstream of antibodies, to regulate the cycle of inflammation in SLE.
Collapse
Affiliation(s)
- Champa Nataraja
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Wendy Dankers
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Jacqueline Flynn
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Jacinta P W Lee
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Wendy Zhu
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Fabien B Vincent
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute, Melbourne, VIC, Australia
| | - Joshua Ooi
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Mehnaz Pervin
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Megan A Cristofaro
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Rochelle Sherlock
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Md Abul Hasnat
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - James Harris
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Eric F Morand
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| | - Sarah A Jones
- Monash University Centre for Inflammatory Disease, School of Clinical Sciences at Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Mullany LK, Lonard DM, O’Malley BW. Wound Healing-related Functions of the p160 Steroid Receptor Coactivator Family. Endocrinology 2021; 162:6042238. [PMID: 33340403 PMCID: PMC7814297 DOI: 10.1210/endocr/bqaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Multicellular organisms have evolved sophisticated mechanisms to recover and maintain original tissue functions following injury. Injury responses require a robust transcriptomic response associated with cellular reprogramming involving complex gene expression programs critical for effective tissue repair following injury. Steroid receptor coactivators (SRCs) are master transcriptional regulators of cell-cell signaling that is integral for embryogenesis, reproduction, normal physiological function, and tissue repair following injury. Effective therapeutic approaches for facilitating improved tissue regeneration and repair will likely involve temporal and combinatorial manipulation of cell-intrinsic and cell-extrinsic factors. Pleiotropic actions of SRCs that are critical for wound healing range from immune regulation and angiogenesis to maintenance of metabolic regulation in diverse organ systems. Recent evidence derived from studies of model organisms during different developmental stages indicates the importance of the interplay of immune cells and stromal cells to wound healing. With SRCs being the master regulators of cell-cell signaling integral to physiologic changes necessary for wound repair, it is becoming clear that therapeutic targeting of SRCs provides a unique opportunity for drug development in wound healing. This review will provide an overview of wound healing-related functions of SRCs with a special focus on cellular and molecular interactions important for limiting tissue damage after injury. Finally, we review recent findings showing stimulation of SRCs following cardiac injury with the SRC small molecule stimulator MCB-613 can promote cardiac protection and inhibit pathologic remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Correspondence: Bert W. O’Malley, MD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA.
| |
Collapse
|
5
|
A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proc Natl Acad Sci U S A 2020; 117:31353-31364. [PMID: 33229578 PMCID: PMC7733826 DOI: 10.1073/pnas.2011614117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We are at an exciting era of identification of the cell and molecular processes necessary for tissue remodeling and repair. Unlike current systemic therapeutics, our studies reveal pharmacologic stimulation of SRCs modulates macrophage and fibrotic reparative cell responses to promote more effective repair and lasting beneficial remodeling after myocardial infarction. Progressive remodeling of the heart, resulting in cardiomyocyte (CM) loss and increased inflammation, fibrosis, and a progressive decrease in cardiac function, are hallmarks of myocardial infarction (MI)-induced heart failure. We show that MCB-613, a potent small molecule stimulator of steroid receptor coactivators (SRCs) attenuates pathological remodeling post-MI. MCB-613 decreases infarct size, apoptosis, hypertrophy, and fibrosis while maintaining significant cardiac function. MCB-613, when given within hours post MI, induces lasting protection from adverse remodeling concomitant with: 1) inhibition of macrophage inflammatory signaling and interleukin 1 (IL-1) signaling, which attenuates the acute inflammatory response, 2) attenuation of fibroblast differentiation, and 3) promotion of Tsc22d3-expressing macrophages—all of which may limit inflammatory damage. SRC stimulation with MCB-613 (and derivatives) is a potential therapeutic approach for inhibiting cardiac dysfunction after MI.
Collapse
|
6
|
Mozaffari MS. Role of GILZ in the Kidney and the Cardiovascular System: Relevance to Cardiorenal Complications of COVID-19. J Pharmacol Exp Ther 2020; 375:398-405. [PMID: 33008869 DOI: 10.1124/jpet.120.000243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Glucocorticoids are extensively used for a variety of conditions, including those associated with dysregulation of immune and inflammatory responses as primary etiopathogenic factors. Indeed, the proinflammatory cytokine storm of coronavirus disease 2019 (COVID-19) is the latest condition for which the use of a glucocorticoid has been advocated. Recognition of serious adverse effects of glucocorticoids has led to research aimed at unraveling molecular basis by which they impact immune and inflammatory events with the ultimate objective of devising novel therapies to circumvent glucocorticoids-related adverse outcomes. Consequently, glucocorticoid-induced leucine zipper (GILZ) protein was discovered and is increasingly recognized as the pivotal regulator of the effects of glucocorticoids on immune and inflammatory responses. Importantly, the advent of GILZ-based options raises the prospect of their eventual therapeutic use for a variety of conditions accompanied with dysregulation of immune and inflammatory responses and associated target organ complications. Thus, the objective of this minireview is to describe our current understanding of the role of GILZ in the cardiovascular system and the kidney along with outcome of GILZ-based interventions on associated disorders. This information is also of relevance for emerging complications of COVID-19. SIGNIFICANCE STATEMENT: Glucocorticoid-induced leucine zipper (GILZ) was initially discovered as the pivotal mediator of immune regulatory/suppressive effects of glucocorticoids. Since the use of glucocorticoids is associated with serious adverse effects, GILZ-based formulations could offer therapeutic advantages. Thus, this minireview will describe our current understanding of the role of GILZ in the kidney and the cardiovascular system, which is of relevance and significance for pathologies affecting them, including the multiorgan complications of coronavirus disease 2019.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, the Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
7
|
Cannarile L, Delfino DV, Adorisio S, Riccardi C, Ayroldi E. Implicating the Role of GILZ in Glucocorticoid Modulation of T-Cell Activation. Front Immunol 2019; 10:1823. [PMID: 31440237 PMCID: PMC6693389 DOI: 10.3389/fimmu.2019.01823] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) is a protein with multiple biological roles that is upregulated by glucocorticoids (GCs) in both immune and non-immune cells. Importantly, GCs are immunosuppressive primarily due to their regulation of cell signaling pathways that are crucial for immune system activity. GILZ, which is transcriptionally induced by the glucocorticoid receptor (GR), mediates part of these immunosuppressive, and anti-inflammatory effects, thereby controlling immune cell proliferation, survival, and differentiation. The primary immune cells targeted by the immunosuppressive activity of GCs are T cells. Importantly, the effects of GCs on T cells are partially mediated by GILZ. In fact, GILZ regulates T-cell activation, and differentiation by binding and inhibiting factors essential for T-cell function. For example, GILZ associates with nuclear factor-κB (NF-κB), c-Fos, and c-Jun and inhibits NF-κB-, and AP-1-dependent transcription. GILZ also binds Raf and Ras, inhibits activation of Ras/Raf downstream targets, including mitogen-activated protein kinase 1 (MAPK1). In addition GILZ inhibits forkhead box O3 (FoxO3) without physical interaction. GILZ also promotes the activity of regulatory T cells (Tregs) by activating transforming growth factor-β (TGF-β) signaling. Ultimately, these actions inhibit T-cell activation and modulate the differentiation of T helper (Th)-1, Th-2, Th-17 cells, thereby mediating the immunosuppressive effects of GCs on T cells. In this mini-review, we discuss how GILZ mediates GC activity on T cells, focusing mainly on the therapeutic potential of this protein as a more targeted anti-inflammatory/immunosuppressive GC therapy.
Collapse
Affiliation(s)
- Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Sabrina Adorisio
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR. Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. Cell Rep 2019; 22:600-610. [PMID: 29346760 DOI: 10.1016/j.celrep.2017.12.072] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.
Collapse
Affiliation(s)
| | | | - Micheal A McLellan
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | - Paul Robson
- The Jackson Laboratory, Bar Harbor, ME, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Alexander R Pinto
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Baban B, Marchetti C, Khodadadi H, Malik A, Emami G, Lin PC, Arbab AS, Riccardi C, Mozaffari MS. Glucocorticoid-Induced Leucine Zipper Promotes Neutrophil and T-Cell Polarization with Protective Effects in Acute Kidney Injury. J Pharmacol Exp Ther 2018; 367:483-493. [PMID: 30301736 DOI: 10.1124/jpet.118.251371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) mediates anti-inflammatory effects of glucocorticoids. Acute kidney injury (AKI) mobilizes immune/inflammatory mechanisms, causing tissue injury, but the impact of GILZ in AKI is not known. Neutrophils play context-specific proinflammatory [type 1 neutrophil (N1)] and anti-inflammatory [type 2 neutrophil (N2)] functional roles. Also, regulatory T lymphocytes (Tregs) and regulatory T-17 (Treg17) cells exert counterinflammatory effects, including the suppression of effector T lymphocytes [e.g., T-helper (Th) 17 cells]. Thus, utilizing cell preparations of mice kidneys subjected to AKI or sham operation, we determined the effects of GILZ on T cells and neutrophil subtypes in the context of its renoprotective effect; these studies used the transactivator of transcription (TAT)-GILZ or the TAT peptide. AKI increased N1 and Th-17 cells but reduced N2, Tregs, and Treg17 cells in association with increased interleukin (IL)-17+ but reduced IL-10+ cells accompanied with the disruption of mitochondrial membrane potential (ψ m) and increased apoptosis/necrosis compared with sham kidneys. TAT-GILZ, compared with TAT, treatment reduced N1 and Th-17 cells but increased N2 and Tregs, without affecting Treg17 cells, in association with a reduction in IL-17+ cells but an increase in IL-10+ cells; TAT-GILZ caused less disruption of ψ m and reduced cell death in AKI. Importantly, TAT-GILZ increased perfusion of the ischemic-reperfused kidney but reduced tissue edema compared with TAT. Utilizing splenic T cells and bone marrow-derived neutrophils, we further showed marked reduction in the proliferation of Th cells in response to TAT-GILZ compared with response to TAT. Collectively, the results indicate that GILZ exerts renoprotection accompanied by the upregulation of the regulatory/suppressive arm of immunity in AKI, likely via regulating cross talk between T cells and neutrophils.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Cristina Marchetti
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Aneeq Malik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Golnaz Emami
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Ping-Chang Lin
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Ali S Arbab
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Carlo Riccardi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| | - Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia (B.B., H.K., A.M., G.E., M.S.M.) and Georgia Cancer Center (P.-C.L., A.S.A.), Augusta University, Augusta, Georgia; and Department of Medicine, University of Perugia, Perugia, Italy (C.M., C.R.)
| |
Collapse
|